Dirac equation in Euclidean Newman-Penrose formalism with applications to instanton metrics

被引:17
|
作者
Sucu, Y [1 ]
Ünal, N [1 ]
机构
[1] Akdeniz Univ, Dept Phys, TR-07058 Antalya, Turkey
关键词
D O I
10.1088/0264-9381/21/6/011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We derive the Dirac equation in the Euclidean version of the Newman-Penrose formalism and show that it splits into two sets of equations, particle and anti-particle equations, under the swapping symmetry and these equations are coupled, respectively, with the self-dual and anti-self-dual parts of the gauge in the gravity. We also solve it for Eguchi-Hanson and Bianchi VII0 gravitational instanton metrics. The solutions are obtained for the Bianchi VII0 gravitational instanton metric as exponential functions by using complex variable and for the Eguchi-Hanson gravitational instanton metric as the product of two hypergeometric functions. In addition, we discuss the regularity and the swapping symmetry of the solutions and show that the topological index of the Dirac equation is zero for both of these metrics.
引用
收藏
页码:1443 / 1451
页数:9
相关论文
共 50 条
  • [1] The Dirac equation in the Newman-Penrose formalism with torsion
    Zecca, A
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2002, 117 (02): : 197 - 201
  • [2] A Newman-Penrose calculator for instanton metrics
    Birkandan, Tolga
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2008, 19 (08): : 1277 - 1290
  • [3] NEWMAN-PENROSE FORMALISM
    PAPAPETROU, A
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1971, 272 (23): : 1537 - +
  • [4] Einstein-Cartan-Dirac equations in the Newman-Penrose formalism
    Khanapurkar, Swanand
    Varma, Abhinav
    Mittal, Nehal
    Gupta, Navya
    Singh, Tejinder P.
    [J]. PHYSICAL REVIEW D, 2018, 98 (06)
  • [5] Gravitational perturbations in the Newman-Penrose formalism: Applications to wormholes
    Del Aguila, Juan Carlos
    Matos, Tonatiuh
    [J]. PHYSICAL REVIEW D, 2021, 103 (08)
  • [6] Comoving Einstein-Maxwell equation in the Newman-Penrose formalism
    Zecca, A
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2005, 120 (01): : 99 - 109
  • [7] GRAVITATIONAL LAGRANGIAN IN NEWMAN-PENROSE FORMALISM
    HERRERA, L
    [J]. LETTERE AL NUOVO CIMENTO, 1978, 21 (01): : 11 - 14
  • [8] NONLINEAR ELECTRODYNAMICS IN NEWMAN-PENROSE FORMALISM
    BICAK, J
    SLAVIK, J
    [J]. ACTA PHYSICA POLONICA B, 1975, 6 (04): : 489 - 508
  • [9] A NEWMAN-PENROSE FORMALISM FOR GRAVITATIONAL INSTANTONS
    GOLDBLATT, E
    [J]. GENERAL RELATIVITY AND GRAVITATION, 1994, 26 (10) : 979 - 997
  • [10] Newman-Penrose formalism in quadratic gravity
    Svarc, R.
    Pravdova, A.
    Miskovsky, D.
    [J]. PHYSICAL REVIEW D, 2023, 107 (02)