Design and analysis of internal cooling passage of gas turbine using computational fluid dynamics

被引:7
|
作者
Jeevahan, Jeya [1 ]
Raj, R. B. Durai [1 ]
Mageshwaran, G. [1 ]
Sriram, V [1 ]
Joseph, G. Britto [1 ]
Poovannan, A. [1 ]
机构
[1] Sathyabama Univ, Mech Engn, Chennai, Tamil Nadu, India
关键词
Internal cooling; CFD; velocity profile; temperature profile; turbulator; cooling passage; HEAT-TRANSFER; SQUARE CHANNELS;
D O I
10.1080/01430750.2017.1372810
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In advanced gas turbines, the turbine blade-operated temperature is above the melting point of blade material. A sophisticated cooling scheme must be developed for continuous safe operation of gas turbines with high performance. This report describes the development and application of a validated computational fluid dynamics (CFD) modelling approach for internal cooling passages in rotating turbomachinery which analyse change in pressure, velocity, temperature, and pressure of fluid in the passage. Velocity changes in the passage help to determine turbulence created in the passage. The CFD analysis is conducted with smooth passage, straight turbulator passage, skewed turbulator passage with different inlet conditions and best model is finalised with high turbulence output. The analysis is carried out using commercial CFD software on k-E model. On evaluating results of different velocity and temperatures, it is found that straight turbulator has more turbulence when compared to smooth and skewed turbulators.Abbreviations: CFD: computational fluid dynamics; CAD: computer-aided design; k-epsilon: Eddy-viscosity model
引用
收藏
页码:105 / 109
页数:5
相关论文
共 50 条
  • [1] Computational fluid dynamics applied to internal gas-turbine blade cooling: A review
    Iacovides, H
    Launder, BE
    [J]. INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 1995, 16 (06) : 454 - 470
  • [2] Computational fluid dynamics-based design method for gas turbine internal flow field optimization
    Sui, Xin
    [J]. Applied Mathematics and Nonlinear Sciences, 2024, 9 (01)
  • [3] Design and computational fluid dynamics analysis of the last stage of innovative gas-steam turbine
    Gluch, Stanislaw Jerzy
    Ziolkowski, Pawel
    Witanowski, Lukasz
    Badur, Janusz
    [J]. ARCHIVES OF THERMODYNAMICS, 2021, 42 (03) : 255 - 278
  • [4] Internal blade cooling: the Cinderella of computational and experimental fluid dynamics research in gas turbines
    Iacovides, H.
    Launder, B. E.
    [J]. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2007, 221 (A3) : 265 - 290
  • [5] Impulse Turbine Injector Design Improvement Using Computational Fluid Dynamics
    Benzon, D.
    Zidonis, A.
    Panagiotopoulos, A.
    Aggidis, G. A.
    Anagnostopoulos, J. S.
    Papantonis, D. E.
    [J]. JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2015, 137 (04):
  • [6] Performance evaluation of gas turbine labyrinth seals using computational fluid dynamics
    Soemarwoto, Bambang I.
    Kok, Johan C.
    De Cock, Koen M. J.
    Kloosterman, Arjen B.
    Kool, Gerrit A.
    Versluis, Joris F. A.
    [J]. PROCEEDINGS OF THE ASME TURBO EXPO 2007, VOL 4, PTS A AND B, 2007, : 1207 - 1217
  • [7] Analysis of Optimized Wind Turbine Failure Using Computational Fluid Dynamics
    Yadav, Shatjit
    Ramachandran, M.
    [J]. MATERIALS TODAY-PROCEEDINGS, 2017, 4 (02) : 1788 - 1793
  • [8] Synergistic analysis of a Darrieus wind turbine using computational fluid dynamics
    Ghazalla, R. A.
    Mohamed, M. H.
    Hafiz, A. A.
    [J]. ENERGY, 2019, 189
  • [9] Thermal analysis and design optimization for cooling passage of turbine blades
    Yu, Kua-Hai
    Yue, Zhu-Feng
    Yang, Xi
    [J]. Tuijin Jishu/Journal of Propulsion Technology, 2009, 30 (03): : 323 - 327
  • [10] Fluid-Thermal-Structural Coupled Analysis of a Radial Inflow Micro Gas Turbine Using Computational Fluid Dynamics and Computational Solid Mechanics
    Xie, Yonghui
    Lu, Kun
    Liu, Le
    Xie, Gongnan
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014