Fabrication of Ag Nanoparticles Embedded in Al:ZnO as Potential Light-Trapping Plasmonic Interface for Thin Film Solar Cells

被引:21
|
作者
Nasser, Hisham [1 ,3 ]
Saleh, Zaki M. [1 ]
Ozkol, Engin [1 ,4 ]
Gunoven, Mete [1 ,3 ]
Bek, Alpan [1 ,2 ]
Turan, Rasit [1 ,2 ]
机构
[1] Middle E Tech Univ, Ctr Solar Energy Res & Applicat GUNAM, TR-06800 Ankara, Turkey
[2] Middle E Tech Univ, Dept Phys, TR-06800 Ankara, Turkey
[3] Middle E Tech Univ, Grad Sch Nat & Appl Sci, Micro & Nanotechnol Program, TR-06800 Ankara, Turkey
[4] Middle E Tech Univ, Dept Chem Engn, TR-06800 Ankara, Turkey
关键词
Silver nanoparticles; Dewetting; Plasmonic resonance; Light-trapping; Solar cells; Aluminum zinc oxide; SILICON NANOCRYSTALS; SILVER FILMS; ABSORPTION; EFFICIENCY; DEVICES; SI;
D O I
10.1007/s11468-013-9562-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Incident photon conversion efficiency of the absorbing materials at either side of a thin film solar module can be enhanced by integrating a plasmonic interface. Silver nanoparticles represent a good candidate that can be integrated to a thin film solar cell for efficient light-trapping. The aim of this work is to fabricate plasmonically active interface consisting of Ag nanoparticles embedded in Al:ZnO that has the potential to be used at the front surface and at the back reflector of a thin film solar cell to enhance light-trapping and increase the photoconversion efficiency. We show that Ag can readily dewet the Al:ZnO surface when annealed at temperatures significantly lower than the melting temperature of Ag, which is beneficial for lowering the thermal budget and cost in solar cell fabrication. We find that such an interface fabricated by a simple dewetting technique leads to plasmonic resonance in the visible and near infrared regions of the solar spectrum, which is important in enhancing the conversion efficiency of thin film solar cells.
引用
收藏
页码:1485 / 1492
页数:8
相关论文
共 50 条
  • [1] Fabrication of Ag Nanoparticles Embedded in Al:ZnO as Potential Light-Trapping Plasmonic Interface for Thin Film Solar Cells
    Hisham Nasser
    Zaki M. Saleh
    Engin Özkol
    Mete Günoven
    Alpan Bek
    Raşit Turan
    Plasmonics, 2013, 8 : 1485 - 1492
  • [2] Plasmonic gratings for enhanced light-trapping in thin-film organic solar cells
    Le, Khai Q.
    Alu, Andrea
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [3] Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles
    Beck, F. J.
    Mokkapati, S.
    Catchpole, K. R.
    PROGRESS IN PHOTOVOLTAICS, 2010, 18 (07): : 500 - 504
  • [4] Light-trapping Al-doped ZnO thin films for organic solar cells
    Yu, Xuan
    Yu, Xiaoming
    Zhang, Jianjun
    Zhang, Dekun
    Chen, Liqiao
    Long, Yunqian
    SOLAR ENERGY, 2017, 153 : 96 - 103
  • [5] Polycrystalline Silicon Thin-film Solar cells with Plasmonic-enhanced Light-trapping
    Varlamov, Sergey
    Rao, Jing
    Soderstrom, Thomas
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2012, (65):
  • [6] Cosine light-trapping nanostructures for thin film solar cells
    Guo, Xiaowei
    Zhou, Yong
    Liu, Bang
    Li, Yi
    OPTICS LETTERS, 2015, 40 (16) : 3866 - 3868
  • [7] A bioinspired hybrid light-trapping structure and its fabrication for thin-film solar cells
    Zhao, Yihong
    Zhu, Ming
    Zhai, Shengjie
    Zhao, Hui
    2021 ANNUAL CONFERENCE OF THE IEEE PHOTONICS SOCIETY (IPC), 2021,
  • [8] Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells
    Ragip A. Pala
    John S. Q. Liu
    Edward S. Barnard
    Daulet Askarov
    Erik C. Garnett
    Shanhui Fan
    Mark L. Brongersma
    Nature Communications, 4
  • [9] Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells
    Pala, Ragip A.
    Liu, John S. Q.
    Barnard, Edward S.
    Askarov, Daulet
    Garnett, Erik C.
    Fan, Shanhui
    Brongersma, Mark L.
    NATURE COMMUNICATIONS, 2013, 4
  • [10] Photonic crystal enhanced light-trapping in thin film solar cells
    Zhou, Dayu
    Biswas, Rana
    JOURNAL OF APPLIED PHYSICS, 2008, 103 (09)