Study of quark propagator solutions to the Dyson-Schwinger equation in a confining model

被引:17
|
作者
McKay, DW
Munczek, HJ
机构
[1] Department of Physics and Astronomy, The University of Kansas, Lawrence, KS
来源
PHYSICAL REVIEW D | 1997年 / 55卷 / 04期
关键词
D O I
10.1103/PhysRevD.55.2455
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We solve the Dyson-Schwinger equation for the quark propagator in a model with singular infrared behavior for the gluon propagator We require that the solutions, easily found in configuration space, be tempered distributions and thus have Fourier transforms. This severely limits the boundary conditions that the solutions may satisify. The sign of the dimensionful parameter that characterizes the model gluon propagator can be either positive or negative. If the sign is negative, we find a unique solution. It is singular at the origin in momentum space, falls off like 1/p(2) as p(2)-->+/1-infinity, and is truly nonperturbative, in that it is singular in the limit that the gluon-quark interaction approaches zero. If the sign of the gluon propagator coefficient is positive, we find solutions that are, in a sense that we exhibit, unconstrained linear combinations of advanced and retarded propagators. These solutions are singular at the origin in momentum space, fall off like 1/p(2) asympotically, exhibit ''resonantlike'' behavior at the position of the bare mass of the quark when the mass is large compared to the dimensionful interaction parameter in the gluon propagator model, and smoothly approach a linear combination of free-quark advanced and retarded two-point functions in the limit that the interaction approaches zero. In this sense, these solutions behave in an increasingly ''particlelike'' manner as the quark becomes heavy. The Feynman propagator and the Wightman function are not tempered distributions and therefore are not acceptable solutions to the Schwinger-Dyson equation in our model. On this basis we advance several arguments to show that the Fourier-transformable solutions we find are consistent with quark confinement, even though they have singularities on the real p(2) axis.
引用
收藏
页码:2455 / 2463
页数:9
相关论文
共 50 条
  • [1] Study of quark propagator solutions to the Dyson-Schwinger equation in a confining model
    McKay, D. W.
    Munczek, H. J.
    Physical Review D Particles, Fields, Gravitation and Cosmology, 55 (04):
  • [2] DETERMINATION OF THE SINGULARITIES OF THE DYSON-SCHWINGER EQUATION FOR THE QUARK PROPAGATOR
    MARIS, P
    HOLTIES, HA
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (21): : 5369 - 5386
  • [3] The solutions of the Dyson-Schwinger equation for quark propagator in the case of nonzero current quark mass
    Zong, Hong-Shi
    Feng, Hong-Tao
    Hou, Feng-Yao
    Sun, Wei-Min
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (23-24): : 4823 - 4833
  • [4] Accounting for the analytical properties of the quark propagator from the Dyson-Schwinger equation
    Dorkin, S. M.
    Kaptari, L. P.
    Kaempfer, B.
    PHYSICAL REVIEW C, 2015, 91 (05):
  • [5] Quark Propagator with electroweak interactions in the Dyson-Schwinger approach
    Mian, Walid Ahmed
    Maas, Axel
    XIITH QUARK CONFINEMENT AND THE HADRON SPECTRUM, 2017, 137
  • [6] Analytical properties of the quark propagator from a truncated Dyson-Schwinger equation in complex Euclidean space
    Dorkin, S. M.
    Kaptari, L. P.
    Hilger, T.
    Kaempfer, B.
    PHYSICAL REVIEW C, 2014, 89 (03):
  • [8] Hybrid stars with the Dyson-Schwinger quark model
    Chen, H.
    Baldo, M.
    Burgio, G. F.
    Schulze, H. -J.
    PHYSICAL REVIEW D, 2011, 84 (10):
  • [9] Strange quark matter and quark stars with the Dyson-Schwinger quark model
    Chen, H.
    Wei, J. -B.
    Schulze, H. -J.
    EUROPEAN PHYSICAL JOURNAL A, 2016, 52 (09):
  • [10] Strange quark matter and quark stars with the Dyson-Schwinger quark model
    H. Chen
    J. -B. Wei
    H. -J. Schulze
    The European Physical Journal A, 2016, 52