RELAXATION OF FLUID SYSTEMS

被引:26
|
作者
Coquel, Frederic [2 ]
Godlewski, Edwige [1 ]
Seguin, Nicolas [1 ]
机构
[1] Univ Paris 06, UMR 7598, LJLL, F-75005 Paris, France
[2] CMAP Ecole Polytech, CNRS, UMR 7641, F-91128 Palaiseau, France
来源
关键词
Hyperbolic system; fluid model; relaxation approximation; finite volume scheme; Godunov-type scheme; DISSIPATIVE HYPERBOLIC SYSTEMS; GODUNOV-TYPE SCHEMES; CONSERVATION-LAWS; SMOOTH SOLUTIONS; LAGRANGIAN SYSTEMS; GLOBAL EXISTENCE; CONVEX ENTROPY; GAS-DYNAMICS; BALANCE LAWS; EQUATIONS;
D O I
10.1142/S0218202512500145
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a relaxation framework for general fluid models which can be understood as a natural extension of the Suliciu approach in the Euler setting. In particular, the relaxation system may be totally degenerate. Several stability properties are proved. The relaxation procedure is shown to be efficient in the numerical approximation of the entropy weak solutions of the original PDEs. The numerical method is particularly simple in the case of a fully degenerate relaxation system for which the solution of the Riemann problem is explicit. Indeed, the Godunov solver for the homogeneous relaxation system results in an HLLC-type solver for the equilibrium model. Discrete entropy inequalities are established under a natural Gibbs principle.
引用
收藏
页数:52
相关论文
共 50 条
  • [1] FLUID SYSTEMS: APPROXIMATION BY RELAXATION AND COUPLING
    Coquel, Frederic
    Godlewski, Edwige
    Seguin, Nicolas
    [J]. HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 631 - 640
  • [2] BASIC CIRCUITS OF FLUID AUTOMATA AND RELAXATION SYSTEMS
    ROSSLER, OE
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG PART B-CHEMIE BIOCHEMIE BIOPHYSIK BIOLOGIE UND VERWANDTEN GEBIETE, 1972, B 27 (04): : 333 - &
  • [3] SHOCK-TUBE RELAXATION MEASUREMENTS IN CRITICAL DEMIXING RANGE OF FLUID SYSTEMS
    PLATZ, G
    WOJAK, KH
    HOFFMANN, H
    [J]. BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1978, 82 (11): : 1253 - 1254
  • [4] RELAXATION PROCESSES AT FLUID INTERFACES
    VANDENTEMPEL, M
    LUCASSENREYNDERS, EH
    [J]. ADVANCES IN COLLOID AND INTERFACE SCIENCE, 1983, 18 (3-4) : 281 - 301
  • [5] RELAXATION METHODS IN FLUID MECHANICS
    LOMAX, H
    STEGER, JL
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 1975, 7 : 63 - 88
  • [6] Relaxation and self-organization in two-dimensional plasma and neutral fluid flow systems
    Das, Amita
    [J]. PHYSICS OF PLASMAS, 2008, 15 (02)
  • [7] ON THERMAL RELAXATION OF MAGNETIC FLUID MAGNETIZATION
    Polunin, C. M.
    Storozhenko, A. M.
    Ryapolov, P. A.
    Kazakov, Yu. B.
    Arefyeva, T. A.
    Arefyev, I. M.
    [J]. MAGNETOHYDRODYNAMICS, 2014, 50 (03): : 223 - 232
  • [8] Rindler fluid with weak momentum relaxation
    Khimphun, Sunly
    Lee, Bum-Noon
    Park, Chanyong
    Zhang, Yun-Long
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2018, (01):
  • [9] A NONLINEAR LANGEVIN EQUATION FOR FLUID RELAXATION
    MARCHESONI, F
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1985, 74 (06): : 1339 - 1342
  • [10] THE VELOCITY OF PROPAGATION OF A SIGNAL IN A FLUID WITH RELAXATION
    DINARIYEV, OY
    [J]. PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1990, 54 (01): : 46 - 51