Born-Oppenheimer quantization of the matrix model for N=1 super-Yang-Mills theory

被引:2
|
作者
Diez, Veronica Errasti [1 ]
Pandey, Mahul [2 ]
Vaidya, Sachindeo [3 ]
机构
[1] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, Fohringer Ring 6, D-80805 Munich, Germany
[2] Dublin Inst Adv Studies, Sch Theoret Phys, 10 Burlington Rd, Dublin 4, Ireland
[3] Indian Inst Sci, Ctr High Energy Phys, Bangalore 560012, Karnataka, India
关键词
DOMAIN-WALLS; PHASE-TRANSITION; SUPERSYMMETRY;
D O I
10.1103/PhysRevD.102.074024
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We construct a quantum mechanical matrix model that is a dimensional reduction of N = 1 super-Yang-Mills on S(3 )x R. We do so by pulling back the set of left-invariant connections of the gauge bundle onto the real superspace, with the spatial R-3 compactified to S-3. We quantize the N = 1 SU(2) matrix model in the weak-coupling limit g << 1, with g the dimensionless gauge coupling constant, using the Born-Oppenheimer approximation and find that different superselection sectors emerge for the effective gluon dynamics in this regime, reminiscent of different phases of the full quantum theory. We demonstrate that the Born-Oppenheimer quantization is indeed compatible with supersymmetry, albeit in a subtle manner. In fact, we can define effective supercharges that relate the different sectors of the matrix model's Hilbert space. These effective supercharges have a different definition in each phase of the theory.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] A note on the dual of N=1 super-Yang-Mills theory
    Bertolini, M
    Merlatti, P
    [J]. PHYSICS LETTERS B, 2003, 556 (1-2) : 80 - 86
  • [2] Quenched spectroscopy for the N=1 super-Yang-Mills theory
    Donini, A
    Guagnelli, M
    Hernandez, P
    Vladikas, A
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1998, 63 : 718 - 720
  • [3] Amplitudes in N=4 Super-Yang-Mills Theory
    Spradlin, Marcus
    [J]. JOURNEYS THROUGH THE PRECISION FRONTIER: AMPLITUDES FOR COLLIDERS (TASI 2014), 2016, : 341 - 361
  • [4] Effective average action in N=1 super-Yang-Mills theory
    Falkenberg, S
    Geyer, B
    [J]. PHYSICAL REVIEW D, 1998, 58 (08)
  • [5] Wilson loops in N = 2 super-Yang-Mills from matrix model
    F. Passerini
    K. Zarembo
    [J]. Journal of High Energy Physics, 2011
  • [6] Wilson loops in N=2 super-Yang-Mills from matrix model
    Passerini, F.
    Zarembo, K.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2011, (09):
  • [7] On matrix models for anomalous dimensions of super-Yang-Mills theory
    Bellucci, S
    Sochichiu, C
    [J]. NUCLEAR PHYSICS B, 2005, 726 (1-2) : 233 - 251
  • [8] Super-Yang-Mills theory in SIM(1) superspace
    Vohanka, Jiri
    Faizal, Mir
    [J]. PHYSICAL REVIEW D, 2015, 91 (04):
  • [9] Towards N=1 super-Yang-Mills on the lattice
    Donini, A
    Guagnelli, M
    Hernandez, P
    Vladikas, A
    [J]. NUCLEAR PHYSICS B, 1998, 523 (03) : 529 - 552
  • [10] N=2*super-Yang-Mills theory at strong coupling
    Chen-Lin, Xinyi
    Gordon, James
    Zarembo, Konstantin
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2014, (11):