Comparison of Different Fuzzy Clustering Algorithms: A Replicated Case Study

被引:3
|
作者
Singh, Tusharika [1 ]
Gosain, Anjana [1 ]
机构
[1] Guru Gobind Singh Indraprastha Univ, Univ Sch Informat & Commun Technol, Delhi 110078, India
来源
关键词
Fuzzy clustering; FCM; PCM; PFCM; IFCM; KFCM; DOFCM; Outliers;
D O I
10.1007/978-981-10-7563-6_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fuzzy clustering partitions data points of a dataset into clusters in which one data point can belong to more than one cluster. In the literature, a number of fuzzy clustering algorithms have been proposed. This paper reviews various fuzzy clustering algorithms such as Fuzzy C-Means (FCM), Possibilistic C-Means (PCM), Possibilistic Fuzzy C-Means (PFCM), Intuitionistic Fuzzy C-Means (IFCM), Kernel Fuzzy C-Means (KFCM), and Density-Oriented Fuzzy C-Means (DOFCM). We have demonstrated the experimental performance of these algorithms on some standard and synthetic datasets which include-Bensaid, Square (DUNN), D15, and D45 dataset. Then, the results are analyzed and compared to see the effectiveness of these algorithms in presence of noise and outliers.
引用
收藏
页码:267 / 275
页数:9
相关论文
共 50 条
  • [1] A Comparison Study between Various Fuzzy Clustering Algorithms
    Bataineh, K. M.
    Naji, M.
    Saqer, M.
    [J]. JORDAN JOURNAL OF MECHANICAL AND INDUSTRIAL ENGINEERING, 2011, 5 (04): : 335 - 343
  • [2] Comparison of fuzzy clustering algorithms for classification
    Almeida, R. J.
    Sousa, J. M. C.
    [J]. 2006 INTERNATIONAL SYMPOSIUM ON EVOLVING FUZZY SYSTEMS, PROCEEDINGS, 2006, : 112 - +
  • [3] A comparison of fuzzy clustering algorithms for bearing fault diagnosis
    Li, Chuan
    Cerrada, Mariela
    Cabrera, Diego
    Sanchez, Rene Vinicio
    Pacheco, Fannia
    Ulutagay, Gozde
    de Oliveira, Jose Valente
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (06) : 3565 - 3580
  • [4] A comparison of different clustering algorithms for speech recognition
    Goddard, J
    Martínez, AE
    Martínez, FM
    Aljama, T
    [J]. PROCEEDINGS OF THE 43RD IEEE MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS I-III, 2000, : 1222 - 1225
  • [5] Comparison of preference clustering outcomes from replicated consumer tests-A case study with mandarins
    Simons, Tyler
    McNeil, Christopher
    Vi Pham
    Slupsky, Carolyn
    Guinard, Jean-Xavier
    [J]. JOURNAL OF SENSORY STUDIES, 2019, 34 (06)
  • [6] Genetic algorithms for clustering and fuzzy clustering
    Bandyopadhyay, Sanghamitra
    [J]. WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2011, 1 (06) : 524 - 531
  • [7] A comparison between two fuzzy clustering algorithms for mixed features
    Ayaquica-Martínez, IO
    Martínez-Trinidad, JF
    [J]. PROGRESS IN PATTERN RECOGNITION, SPEECH AND IMAGE ANALYSIS, 2003, 2905 : 472 - 479
  • [8] Web Fuzzy Clustering and a Case Study
    LIU Mao-fu 1
    2. The State Key Laboratory of Software Engineering
    3. Deparment of Computer Science
    [J]. Wuhan University Journal of Natural Sciences, 2004, (04) : 411 - 414
  • [9] A comparison study of clustering algorithms for microblog posts
    Li, Lin
    Ye, Jingjing
    Deng, Fang
    Xiong, Shengwu
    Zhong, Luo
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2016, 19 (03): : 1333 - 1345
  • [10] Genetic clustering algorithms: A comparison simulation study
    Department of Sociology and Communication, University of Rome La Sapienza, Via Salaria 113, 00198 Rome, Italy
    [J]. Int J Modell Simul, 2006, 3 (190-200):