Impact of Vacancies on Diffusive and Pseudodiffusive Electronic Transport in Graphene

被引:3
|
作者
Cresti, Alessandro [1 ,2 ]
Louvet, Thibaud [3 ,4 ]
Ortmann, Frank [3 ]
Van Tuan, Dinh [3 ]
Lenarczyk, Pawel [3 ,5 ]
Huhs, Georg [6 ]
Roche, Stephan [3 ,7 ]
机构
[1] Grenoble INP Minatec, Inst Microelect Electromagnetisme & Photon, F-380166 Grenoble, France
[2] Grenoble INP Minatec, UJF 5130, INPG, UMR CNRS,IMEP LAHC, F-380166 Grenoble, France
[3] Univ Autonoma Barcelona, Catalan Inst Nanotechnol CIN2, Bellaterra 08193, Spain
[4] Ecole Normale Super Lyon, F-69007 Lyon, France
[5] Tech Univ Lodz, Inst Phys, PL-93005 Lodz, Poland
[6] BSC, Barcelona 08034, Spain
[7] ICREA, Barcelona 08070, Spain
来源
CRYSTALS | 2013年 / 3卷 / 02期
关键词
graphene; vacancies; quantum transport; DISORDERED GRAPHENE; QUANTUM TRANSPORT; CONDUCTIVITY; MAGNETISM; ROUTE;
D O I
10.3390/cryst3020289
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
We present a survey of the effect of vacancies on quantum transport in graphene, exploring conduction regimes ranging from tunnelling to intrinsic transport phenomena. Vacancies, with density up to 2%, are distributed at random either in a balanced manner between the two sublattices or in a totally unbalanced configuration where only atoms sitting on a given sublattice are randomly removed. Quantum transmission shows a variety of different behaviours, which depend on the specific system geometry and disorder distribution. The investigation of the scaling laws of the most significant quantities allows a deep physical insight and the accurate prediction of their trend over a large energy region around the Dirac point.
引用
收藏
页码:289 / 305
页数:17
相关论文
共 50 条
  • [1] Disorder-induced pseudodiffusive transport in graphene nanoribbons
    Dietl, P.
    Metalidis, G.
    Golubev, D.
    San-Jose, P.
    Prada, E.
    Schomerus, H.
    Schoen, G.
    [J]. PHYSICAL REVIEW B, 2009, 79 (19):
  • [2] Pseudodiffusive magnetotransport in graphene
    Prada, Elsa
    San-Jose, Pablo
    Wunsch, Bernhard
    Guinea, Francisco
    [J]. PHYSICAL REVIEW B, 2007, 75 (11)
  • [3] Electronic transport properties of metallic graphene nanoribbons with two vacancies
    Ma, K. L.
    Yan, X. H.
    Xiao, Y.
    Chen, Y. P.
    [J]. SOLID STATE COMMUNICATIONS, 2010, 150 (29-30) : 1308 - 1312
  • [4] Diffusive transport in graphene
    Liu, S. Y.
    Lei, X. L.
    Horing, Norman J. M.
    [J]. IEEE SENSORS JOURNAL, 2008, 8 (5-6) : 767 - 770
  • [5] Diffusive transport in graphene
    Ziegler, K.
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (07): : 2622 - 2625
  • [6] Experimental Observation of Strong Edge Effects on the Pseudodiffusive Transport of Light in Photonic Graphene
    Zandbergen, Sander R.
    de Dood, Michiel J. A.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (04)
  • [7] Ballistic versus diffusive transport in graphene
    Borunda, Mario F.
    Hennig, H.
    Heller, Eric J.
    [J]. PHYSICAL REVIEW B, 2013, 88 (12)
  • [8] Scaling properties of diffusive electronic transport in graphene nanoribbons functionalized with methyl-groups
    Alessandro Cresti
    [J]. Journal of Computational Electronics, 2013, 12 : 94 - 103
  • [9] Scaling properties of diffusive electronic transport in graphene nanoribbons functionalized with methyl-groups
    Cresti, Alessandro
    [J]. JOURNAL OF COMPUTATIONAL ELECTRONICS, 2013, 12 (02) : 94 - 103
  • [10] Electronic and Transport Properties in Defective MoS2: Impact of Sulfur Vacancies
    Gali, Sai Manoj
    Pershin, Anton
    Lherbier, Aurelien
    Charlier, Jean-Christophe
    Beljonne, David
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (28): : 15076 - 15084