The complex Jacobi iterative method for three-dimensional wide-angle beam propagation

被引:18
|
作者
Le, Khai Q. [1 ]
Godoy-Rubio, R. [2 ]
Bienstman, Peter [1 ]
Hadley, G. Ronald [3 ]
机构
[1] Univ Ghent, IMEC, Dept Informat Technol, B-9000 Ghent, Belgium
[2] Univ Malaga, Dept Ingn Comunicac, E-29071 Malaga, Spain
[3] Sandia Natl Labs, Albuquerque, NM 87185 USA
关键词
D O I
10.1364/OE.16.017021
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A new complex Jacobi iterative technique adapted for the solution of three-dimensional (3D) wide-angle (WA) beam propagation is presented. The beam propagation equation for analysis of optical propagation in waveguide structures is based on a novel modified Pade(1,1) approximant operator, which gives evanescent waves the desired damping. The resulting approach allows more accurate approximations to the true Helmholtz equation than the standard Pade approximant operators. Furthermore, a performance comparison of the traditional direct matrix inversion and this new iterative technique for WA-beam propagation method is reported. It is shown that complex Jacobi iteration is faster and better-suited for large problems or structures than direct matrix inversion. (C) 2008 Optical Society of America
引用
收藏
页码:17021 / 17030
页数:10
相关论文
共 50 条
  • [1] The complex Jacobi iterative method for three-dimensional wide-angle beam propagation (vol 16, pg 17021, 2008)
    Le, Khai Q.
    Godoy-Rubio, R.
    Bienstman, Peter
    Hadley, G. Ronald
    [J]. OPTICS EXPRESS, 2008, 16 (26): : 21942 - 21942
  • [2] Fast three-dimensional generalized rectangular wide-angle beam propagation method using complex Jacobi iteration
    Le, Khai Q.
    Bienstman, Peter
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2009, 26 (07) : 1469 - 1472
  • [3] A simple three dimensional wide-angle beam propagation method
    Ma, Changbao
    Van Keuren, Edward
    [J]. OPTICS EXPRESS, 2006, 14 (11): : 4668 - 4674
  • [4] Three-dimensional higher-order Pade approximant-based wide-angle beam propagation method using complex Jacobi iteration
    Khai, Q. Le
    Bienstman, P.
    [J]. ELECTRONICS LETTERS, 2010, 46 (03) : 231 - 232
  • [5] Nonlinear wide-angle beam propagation method using complex Jacobi iteration in the Fourier domain
    Godoy-Rubio, Rafael
    Romero-Garcia, Sebastian
    Ortega-Monux, Alejandro
    Gonzalo Wangueemert-Perez, J.
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2011, 28 (09) : 2142 - 2148
  • [6] Efficient three-dimensional wide-angle, beam-propagation method for the analysis of optical waveguide devices
    Shibayama, Jun
    Takahashi, Tatsuya
    Yamauchi, Junji
    Nakano, Hisamatstu
    [J]. 2007 PACIFIC RIM CONFERENCE ON LASERS AND ELECTRO-OPTICS, VOLS 1-4, 2007, : 648 - 649
  • [7] A three-dimensional multistep horizontally wide-angle beam-propagation method based on the generalized Douglas scheme
    Shibayama, Jun
    Takahashi, Tatsuya
    Yamauchi, Junji
    Nakano, Hisamatsu
    [J]. IEEE PHOTONICS TECHNOLOGY LETTERS, 2006, 18 (21-24) : 2535 - 2537
  • [8] A stable complex Jacobi iterative solution of 3D semivectorial wide-angle beam propagation using the iterated Crank–Nicholson method
    Khai Q. Le
    Peter Bienstman
    [J]. Optical and Quantum Electronics, 2009, 41 : 215 - 221
  • [9] Nonparaxial Split-Step Method With Local One-Dimensional Scheme for Three-Dimensional Wide-Angle Beam Propagation
    Cheng, Hua
    Zang, Wei-Ping
    Li, Zu-Bin
    Zhou, Wen-Yuan
    Tian, Jian-Guo
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2009, 27 (14) : 2717 - 2723
  • [10] Modified wide-angle beam propagation method
    Ju, Zhenle
    Fu, Junmei
    Feng, Enxin
    [J]. Bandaoti Guangdian/Semiconductor Optoelectronics, 1998, 19 (03): : 184 - 186