Convergence of Weak Kahler-Ricci Flows on Minimal Models of Positive Kodaira Dimension

被引:14
|
作者
Eyssidieux, Phylippe [1 ,2 ]
Guedj, Vincent [3 ,4 ]
Zeriahi, Ahmed [3 ]
机构
[1] Univ Joseph Fourier, Grenoble, France
[2] Inst Univ France, Grenoble, France
[3] Univ Toulouse, CNRS, Inst Math Toulouse, UPS, 118 Route Narbonne, F-31062 Toulouse 09, France
[4] Univ Toulouse, CNRS, Inst Univ France, UPS, 118 Route Narbonne, F-31062 Toulouse 09, France
关键词
EINSTEIN METRICS; VISCOSITY SOLUTIONS; EQUATIONS;
D O I
10.1007/s00220-018-3087-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Studying the behavior of the Kahler-Ricci flow on mildly singular varieties, one is naturally lead to study weak solutions of degenerate parabolic complex Monge-AmpSre equations. In this article, the third of a series on this subject, we study the long term behavior of the normalized Kahler-Ricci flow on mildly singular varieties of positive Kodaira dimension, generalizing results of Song and Tian who dealt with smooth minimal models.
引用
收藏
页码:1179 / 1214
页数:36
相关论文
共 50 条
  • [1] Convergence of Weak Kähler–Ricci Flows on Minimal Models of Positive Kodaira Dimension
    Phylippe Eyssidieux
    Vincent Guedj
    Ahmed Zeriahi
    [J]. Communications in Mathematical Physics, 2018, 357 : 1179 - 1214
  • [2] The Kahler-Ricci flow on surfaces of positive Kodaira dimension
    Song, Jian
    Tian, Gang
    [J]. INVENTIONES MATHEMATICAE, 2007, 170 (03) : 609 - 653
  • [3] Convergence of scalar curvature of Kahler-Ricci flow on manifolds of positive Kodaira dimension
    Jian, Wangjian
    [J]. ADVANCES IN MATHEMATICS, 2020, 371
  • [4] Convergence results for two Kahler-Ricci flows
    Zhang, Zhou
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2014, 25 (09)
  • [5] Convergence of a Kahler-Ricci flow
    Sesum, N
    [J]. MATHEMATICAL RESEARCH LETTERS, 2005, 12 (5-6) : 623 - 632
  • [6] On convergence of the Kahler-Ricci flow
    Munteanu, Ovidiu
    Szekelyhidi, Gabor
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2011, 19 (05) : 887 - 903
  • [7] Pluripotential Kahler-Ricci flows
    Guedj, Vincent
    Lu, Chinh H.
    Zeriahi, Ahmed
    [J]. GEOMETRY & TOPOLOGY, 2020, 24 (03) : 1225 - 1296
  • [8] ON THE WEAK KAHLER-RICCI FLOW
    Chen, X. X.
    Tian, G.
    Zhang, Z.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (06) : 2849 - 2863
  • [9] CONVERGENCE OF THE KAHLER-RICCI ITERATION
    Darvas, Tamas
    Rubinstein, Yanir A.
    [J]. ANALYSIS & PDE, 2019, 12 (03): : 721 - 735
  • [10] Convergence of the Weak Kahler-Ricci Flow on Manifolds of General Type
    Tat Dat To
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (08) : 6373 - 6404