Performance of 2019 ESC risk classification and the Steno type 1 risk engine in predicting cardiovascular events in adults with type 1 diabetes: A retrospective study

被引:4
|
作者
Tecce, Nicola [1 ]
Masulli, Maria [1 ]
Palmisano, Luisa [1 ]
Gianfrancesco, Salvatore [1 ]
Piccolo, Roberto [1 ]
Pacella, Daniela [2 ]
Bozzetto, Lutgarda [1 ]
Massimino, Elena [1 ]
Della Pepa, Giuseppe [1 ]
Lupoli, Roberta [3 ]
Vaccaro, Olga [1 ]
Riccardi, Gabriele [1 ]
Capaldo, Brunella [1 ]
机构
[1] Univ Naples Federico II, Dept Clin Med & Surg, Via S Pansini 5, I-80131 Naples, Italy
[2] Univ Naples Federico II, Dept Publ Hlth, Naples, Italy
[3] Univ Naples Federico II, Dept Mol Med & Med Biotechnol, Naples, Italy
关键词
Type; 1; diabetes; Cardiovascular disease; STENO Type 1 risk engine; 2019 ESC guidelines; DISEASE; MORTALITY; 1ST;
D O I
10.1016/j.diabres.2022.110001
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims: The study compares the performance of the European Society of Cardiology (ESC) risk criteria and the Steno Type 1 Risk Engine (ST1RE) in the prediction of cardiovascular (CV) events. Methods: 456 adults with type 1 diabetes (T1D) were retrospectively studied. During 8.5 +/- 5.5 years of observation, twenty-four patients (5.2%) experienced a CV event. The predictive performance of the two risk models was evaluated by classical metrics and the event-free survival analysis. Results: The ESC criteria show excellent sensitivity (91.7%) and suboptimal specificity (64.4 %) in predicting CV events in the very high CV risk group, but a poor performance in the high/moderate risk groups. The ST1RE algorithm shows a good predictive performance in all CV risk categories. Using ESC classification, the event-free survival analysis shows a significantly higher event rate in the very high CV risk group compared to the high/moderate risk group (p < 0.0019). Using the ST1RE algorithm, a significant difference in the event-free survival curve was found between the three CV risk categories (p < 0.0001). Conclusions: In T1D the ESC classification has a good performance in predicting CV events only in those at very high CV risk, whereas the ST1RE algorithm has a good performance in all risk categories.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Evaluation of cardiovascular risk in adults with type 1 diabetes: poor concordance between the 2019 ESC risk classification and 10-year cardiovascular risk prediction according to the Steno Type 1 Risk Engine
    Nicola Tecce
    Maria Masulli
    Roberta Lupoli
    Giuseppe Della Pepa
    Lutgarda Bozzetto
    Luisa Palmisano
    Angela Albarosa Rivellese
    Gabriele Riccardi
    Brunella Capaldo
    Cardiovascular Diabetology, 19
  • [2] Evaluation of cardiovascular risk in adults with type 1 diabetes: poor concordance between the 2019 ESC risk classification and 10-year cardiovascular risk prediction according to the Steno Type 1 Risk Engine
    Tecce, Nicola
    Masulli, Maria
    Lupoli, Roberta
    Della Pepa, Giuseppe
    Bozzetto, Lutgarda
    Palmisano, Luisa
    Rivellese, Angela Albarosa
    Riccardi, Gabriele
    Capaldo, Brunella
    CARDIOVASCULAR DIABETOLOGY, 2020, 19 (01)
  • [3] Performance of the Steno type 1 risk engine for cardiovascular disease prediction in Italian patients with type 1 diabetes
    Boscari, Federico
    Morieri, Mario Luca
    Amato, Anna Maria Letizia
    Vallone, Valeria
    Uliana, Ambra
    Baritussio, Anna
    Vitturi, Nicola
    Cipponeri, Elisa
    Cavallin, Francesco
    Avogaro, Angelo
    Fadini, Gian Paolo
    Bruttomesso, Daniela
    NUTRITION METABOLISM AND CARDIOVASCULAR DISEASES, 2020, 30 (10) : 1813 - 1819
  • [4] Prediction of First Cardiovascular Disease Event in Type 1 Diabetes Mellitus The Steno Type 1 Risk Engine
    Vistisen, Dorte
    Andersen, Gregers Stig
    Hansen, Christian Stevns
    Hulman, Adam
    Henriksen, Jan Erik
    Bech-Nielsen, Henning
    Jorgensen, Marit Eika
    CIRCULATION, 2016, 133 (11) : 1058 - 1066
  • [5] Type 1 diabetes: defining the best cut-off points of arterial stiffness for predicting cardiovascular risk according to the Steno Type 1 Risk Engine
    Llaurado, G.
    Cano, A.
    Albert, L.
    Mazarico, I.
    Gonzalez-Sastre, M.
    Vendrell, J.
    Gonzalez-Clemente, J. -M.
    DIABETOLOGIA, 2018, 61 : S551 - S551
  • [6] Evaluation of the Steno Type 1 Risk Engine in predicting cardiovascular events in an ethnic mixed population of type 1 diabetes mellitus and its association with chronic microangiopathy complications
    Paliares, Isabella Cristina
    Dualib, Patricia Medici
    Torres, Laisa Stephane Noronha
    Aroucha, Priscila Maria Teixeira
    de Almeida-Pititto, Bianca
    de Sa, Joao Roberto
    Dib, Sergio Atala
    CARDIOVASCULAR DIABETOLOGY, 2024, 23 (01)
  • [7] Utility of Insulin Resistance in Estimating Cardiovascular Risk in Subjects with Type 1 Diabetes According to the Scores of the Steno Type 1 Risk Engine
    Cano, Albert
    Llaurado, Gemma
    Albert, Lara
    Mazarico, Isabel
    Astiarraga, Brenno
    Gonzalez-Sastre, Montserrat
    Martinez, Laia
    Fernandez-Veledo, Sonia
    Simo, Rafael
    Vendrell, Joan
    Gonzalez-Clemente, Jose-Miguel
    JOURNAL OF CLINICAL MEDICINE, 2020, 9 (07) : 1 - 12
  • [8] Steno type 1 risk engine and preclinical atherosclerosis in Mediterranean individuals with type 1 diabetes
    Vinals, C.
    Conget, I.
    Pane, A.
    Boswell, L.
    Perea, V.
    Blanco, A. J.
    Ruiz, S.
    Gimenez, M.
    Vinagre, I.
    Esmatjes, E.
    Ortega, E.
    Amor, A. J.
    DIABETES-METABOLISM RESEARCH AND REVIEWS, 2020, 36 (07)
  • [9] Prediction of First Cardiovascular Disease Event in Type 1 Diabetes: The Steno T1 Risk Engine
    Vistisen, Dorte
    Andersen, Gregers S.
    Hansen, Christian S.
    Jorgensen, Marit E.
    DIABETES, 2014, 63 : A89 - A89
  • [10] COMPARING THE CARDIOVASCULAR RISK ESTIMATION IN YOUNG ADULT PATIENTS WITH TYPE 1 DIABETES: STENO F1RISKENGINE VS. ESC-EASD 2019 RISK TABLE
    Kuzior, Agnieszka
    Rios-Gomez, Carlos
    Santana-Ojeda, Borja
    De Leon-Durango, Ricardo Jose
    Hernandez-Lazaro, Alba
    Arnas-Leon, Claudia
    Acosta-Calero, Carmen
    Ortiz-Hernandez, Catherine Pino
    Perez-Rivero, Jennifer Maria
    Martinez-Martin, Francisco Javier
    JOURNAL OF HYPERTENSION, 2023, 41 : E157 - E157