Rheological Properties of Coordinated Physical Gelation and Chemical Crosslinking in Gelatin Methacryloyl (GelMA) Hydrogels

被引:73
|
作者
Young, Ashlyn T. [1 ,2 ]
White, Olivia C. [3 ]
Daniele, Michael A. [1 ,2 ,3 ]
机构
[1] North Carolina State Univ, Joint Dept Biomed Engn, 911 Oval Dr, Raleigh, NC 27695 USA
[2] Univ North Carolina Chapel Hill, 911 Oval Dr, Raleigh, NC 27695 USA
[3] North Carolina State Univ, Dept Elect & Comp Engn, 890 Oval Dr, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
animal source; gelatin; gelatin methacryloyl; gelation; GelMA; mechanical properties; photopolymerization; TUMOR SPHEROIDS; FIBRIL SIZE; I COLLAGEN; CELL; STIFFNESS; MATRIX; NETWORK; PROTEIN; STRESS; DIFFERENTIATION;
D O I
10.1002/mabi.202000183
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Synthetically modified proteins, such as gelatin methacryloyl (GelMA), are growing in popularity for bioprinting and biofabrication. GelMA is a photocurable macromer that can rapidly form hydrogels, while also presenting bioactive peptide sequences for cellular adhesion and proliferation. The mechanical properties of GelMA are highly tunable by modifying the degree of substitution via synthesis conditions, though the effects of source material and thermal gelation have not been comprehensively characterized for lower concentration gels. Herein, the effects of animal source and processing sequence are investigated on scaffold mechanical properties. Hydrogels of 4-6 wt% are characterized. Depending on the temperature at crosslinking, the storage moduli for GelMA derived from pigs, cows, and cold-water fish range from 723 to 7340 Pa, 516 to 3484 Pa, and 294 to 464 Pa, respectively. The maximum storage moduli are achieved only by coordinated physical gelation and chemical crosslinking. In this method, the classic thermo-reversible gelation of gelatin occurs when GelMA is cooled below a thermal transition temperature, which is subsequently "locked in" by chemical crosslinking via photocuring. The effects of coordinated physical gelation and chemical crosslinking are demonstrated by precise photopatterning of cell-laden microstructures, inducing different cellular behavior depending on the selected mechanical properties of GelMA.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels
    Yue, Kan
    Trujillo-de Santiago, Grissel
    Moises Alvarez, Mario
    Tamayol, Ali
    Annabi, Nasim
    Khademhosseini, Ali
    [J]. BIOMATERIALS, 2015, 73 : 254 - 271
  • [2] Gelatin Methacryloyl (GelMA) Nanocomposite Hydrogels Embedding Bioactive Naringin Liposomes
    Elkhoury, Kamil
    Sanchez-Gonzalez, Laura
    Lavrador, Pedro
    Almeida, Rui
    Gaspar, Vitor
    Kahn, Cyril
    Cleymand, Franck
    Arab-Tehrany, Elmira
    Mano, Joao F.
    [J]. POLYMERS, 2020, 12 (12) : 1 - 16
  • [3] Stem Cell Mechanosensation on Gelatin Methacryloyl (GelMA) Stiffness Gradient Hydrogels
    Claire Kim
    Jennifer L. Young
    Andrew W. Holle
    Kwanghee Jeong
    Luke G. Major
    Ji Hoon Jeong
    Zachary M. Aman
    Dong-Wook Han
    Yongsung Hwang
    Joachim P. Spatz
    Yu Suk Choi
    [J]. Annals of Biomedical Engineering, 2020, 48 : 893 - 902
  • [4] Synthesis and Properties of Gelatin Methacryloyl (GelMA) Hydrogels and Their Recent Applications in Load-Bearing Tissue
    Sun, Mingyue
    Sun, Xiaoting
    Wang, Ziyuan
    Guo, Shuyu
    Yu, Guangjiao
    Yang, Huazhe
    [J]. POLYMERS, 2018, 10 (11)
  • [5] Stem Cell Mechanosensation on Gelatin Methacryloyl (GelMA) Stiffness Gradient Hydrogels
    Kim, Claire
    Young, Jennifer L.
    Holle, Andrew W.
    Jeong, Kwanghee
    Major, Luke G.
    Jeong, Ji Hoon
    Aman, Zachary M.
    Han, Dong-Wook
    Hwang, Yongsung
    Spatz, Joachim P.
    Choi, Yu Suk
    [J]. ANNALS OF BIOMEDICAL ENGINEERING, 2020, 48 (02) : 893 - 902
  • [6] Differentiation of physical and chemical cross-linking in gelatin methacryloyl hydrogels
    Lisa Rebers
    Raffael Reichsöllner
    Sophia Regett
    Günter E. M. Tovar
    Kirsten Borchers
    Stefan Baudis
    Alexander Southan
    [J]. Scientific Reports, 11
  • [7] Differentiation of physical and chemical cross-linking in gelatin methacryloyl hydrogels
    Rebers, Lisa
    Reichsollner, Raffael
    Regett, Sophia
    Tovar, Guenter E. M.
    Borchers, Kirsten
    Baudis, Stefan
    Southan, Alexander
    [J]. SCIENTIFIC REPORTS, 2021, 11 (01)
  • [8] In vitro and in vivo analysis of visible light crosslinkable gelatin methacryloyl (GelMA) hydrogels
    Noshadi, Iman
    Hong, Seonki
    Sullivan, Kelly E.
    Sani, Ehsan Shirzaei
    Portillo-Lara, Roberto
    Tamayol, Ali
    Shin, Su Ryon
    Gao, Albert E.
    Stoppel, Whitney L.
    Black, Lauren D., III
    Khademhosseini, Ali
    Annabi, Nasim
    [J]. BIOMATERIALS SCIENCE, 2017, 5 (10) : 2093 - 2105
  • [9] Gelatin Methacryloyl-Riboflavin (GelMA-RF) Hydrogels for Bone Regeneration
    Goto, Ryoma
    Nishida, Eisaku
    Kobayashi, Shuichiro
    Aino, Makoto
    Ohno, Tasuku
    Iwamura, Yuki
    Kikuchi, Takeshi
    Hayashi, Jun-ichiro
    Yamamoto, Genta
    Asakura, Masaki
    Mitani, Akio
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (04) : 1 - 12
  • [10] Surface acoustic waves induced micropatterning of cells in gelatin methacryloyl (GelMA) hydrogels
    Naseer, Shahid M.
    Manbachi, Amir
    Samandari, Mohamadmahdi
    Walch, Philipp
    Gao, Yuan
    Zhang, Yu Shrike
    Davoudi, Farideh
    Wang, Wesley
    Abrinia, Karen
    Cooper, Jonathan M.
    Khademhosseini, Ali
    Shin, Su Ryon
    [J]. BIOFABRICATION, 2017, 9 (01)