Estimating the Effect of Multiple Imputation on Incomplete Longitudinal Data with Application to a Randomized Clinical Study

被引:3
|
作者
Fong, Daniel Y. T. [1 ]
Rai, Shesh N. [2 ]
Lam, Karen S. L. [3 ]
机构
[1] Univ Hong Kong, Li Ka Shing Fac Med, Sch Nursing, Hong Kong, Hong Kong, Peoples R China
[2] Univ Louisville, Dept Bioinformat, Biostat Shared Facil, JG Brown Canc Ctr, Louisville, KY 40292 USA
[3] Univ Hong Kong, Li Ka Shing Fac Med, Dept Med, Hong Kong, Hong Kong, Peoples R China
关键词
Generalized estimating equations; Missing values; Mixed effects model; GENERALIZED ESTIMATING EQUATIONS; MISSING DATA; MARGINAL MODELS; TRIALS; INFERENCE;
D O I
10.1080/10543406.2013.813514
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
For analyzing incomplete longitudinal data, there has been recent interest in comparing estimates with and without the use of multiple imputation along with mixed effects model and generalized estimating equations. Empirically, the additional use of multiple imputation generally led to overestimated variances and may yield more heavily biased estimates than the use of last observation carried forward. Under ignorable or nonignorable missing values, a mixed effects model or generalized estimating equations alone yielded more unbiased estimates. The different methods were also assessed in a randomized controlled clinical trial.
引用
收藏
页码:1004 / 1022
页数:19
相关论文
共 50 条
  • [1] A multiple imputation strategy for incomplete longitudinal data
    Landrum, MB
    Becker, MP
    [J]. STATISTICS IN MEDICINE, 2001, 20 (17-18) : 2741 - 2760
  • [2] A functional multiple imputation approach to incomplete longitudinal data
    He, Yulei
    Yucel, Recai
    Raghunathan, Trivellore E.
    [J]. STATISTICS IN MEDICINE, 2011, 30 (10) : 1137 - 1156
  • [3] A Simulation Study Comparing Multiple Imputation Methods for Incomplete Longitudinal Ordinal Data
    Donneau, A. F.
    Mauer, M.
    Molenberghs, G.
    Albert, A.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (05) : 1311 - 1338
  • [4] Analysis of incomplete longitudinal binary data using multiple imputation
    Li, Xiaoming
    Mehrotra, Devan V.
    Barnard, John
    [J]. STATISTICS IN MEDICINE, 2006, 25 (12) : 2107 - 2124
  • [5] A comparison of multiple imputation methods for incomplete longitudinal binary data
    Yamaguchi, Yusuke
    Misumi, Toshihiro
    Maruo, Kazushi
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2018, 28 (04) : 645 - 667
  • [6] Using multiple imputation for analysis of incomplete data in clinical research
    McCleary, L
    [J]. NURSING RESEARCH, 2002, 51 (05) : 339 - 343
  • [7] Comparing Different Imputation Methods for Incomplete Longitudinal Data on Clinical Dataset
    Jin, Bo
    Bai, Yuxin
    Wang, Chongyuan
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI), 2019, : 531 - 532
  • [8] Dual imputation model for incomplete longitudinal data
    Jolani, Shahab
    Frank, Laurence E.
    van Buuren, Stef
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2014, 67 (02): : 197 - 212
  • [9] An imputation strategy for incomplete longitudinal ordinal data
    Demirtas, Hakan
    Hedeker, Donald
    [J]. STATISTICS IN MEDICINE, 2008, 27 (20) : 4086 - 4093
  • [10] A simulation study comparing weighted estimating equations with multiple imputation based estimating equations for longitudinal binary data
    Beunckens, Caroline
    Sotto, Cristina
    Molenberghs, Geert
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (03) : 1533 - 1548