On the uniformity of zero-dimensional complete intersections

被引:3
|
作者
Geramita, Anthony V. [1 ,2 ]
Kreuzer, Martin [3 ]
机构
[1] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
[2] Univ Genoa, Dipartimento Matemat, Genoa, Italy
[3] Univ Passau, Fak Math & Informat, D-94030 Passau, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
Complete intersection; Cayley-Bacharach Theorem; Zero-dimensional scheme; Minimal distance; Generalized Reed-Muller code; CAYLEY-BACHARACH; CODES;
D O I
10.1016/j.jalgebra.2013.05.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
After showing that the General Cayley-Bacharach Conjecture formulated by D. Eisenbud, M. Green, and J. Harris (1996) [6] is equivalent to a conjecture about the region of uniformity of a zero-dimensional complete intersection, we prove this conjecture in a number of special cases. In particular, after splitting the conjecture into several intervals, we prove it for the first, the last and part of the penultimate interval. Moreover, we generalize the uniformity results of J. Hansen (2003) [12] and L Gold, J. Little, and H. Schenck (2005) [9] to level schemes and apply them to obtain bounds for the minimal distance of generalized Reed-Muller codes. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:82 / 92
页数:11
相关论文
共 50 条