Selectively Sized Graphene-Based Nanopores for in Situ Single Molecule Sensing

被引:24
|
作者
Crick, Colin R. [1 ]
Sze, Jasmine Y. Y. [1 ]
Rosillo-Lopez, Martin [2 ]
Salzmann, Christoph G. [2 ]
Edel, Joshua B. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Chem, London SW7 2AZ, England
[2] Univ London Univ Coll, Dept Chem, London WC1H 0AJ, England
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
nanopore; graphene; DNA; translocation; graphene nanoflake; size tuning; DNA-MOLECULES; CURRENT RECTIFICATION; STRANDED-DNA; TRANSPORT; BIOSENSORS; LAYER; ELECTROCHEMISTRY; TRANSLOCATION; NANOPIPETTES; FABRICATION;
D O I
10.1021/acsami.5b06212
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The use of nanopore biosensors is set to be extremely important in developing precise single molecule detectors and providing highly sensitive advanced analysis of biological molecules. The precise tailoring of nanopore size is a significant step toward achieving this, as it would allow for a nanopore to be tuned to a corresponding analyte. The work presented here details a methodology for selectively opening nanopores in real-time. The tunable nanopores on a quartz nanopipette platform are fabricated using the electroetching of a graphene-based membrane constructed from individual graphene nanoflakes (empty set similar to 30 nm). The device design allows for in situ opening of the graphene membrane, from fully closed to fully opened (empty set similar to 25 nm), a feature that has yet to be reported in the literature. The translocation of DNA is studied as the pore size is varied, allowing for subfeatures of DNA to be detected with slower DNA translocations at smaller-pore sizes, and the ability to observe trends as the pore is opened. This approach opens the door to creating a device that can be target to detect specific analytes.
引用
收藏
页码:18188 / 18194
页数:7
相关论文
共 50 条
  • [1] Electrical Pulse Fabricated Graphene Nanopores for Single Molecule Sensing
    Kuan, Aaron
    Lu, Bo
    Golovchenko, Jene
    BIOPHYSICAL JOURNAL, 2015, 108 (02) : 175A - 175A
  • [2] Single-molecule sensing with nanopores
    Muthukumar, Murugappan
    Plesa, Calin
    Dekker, Cees
    PHYSICS TODAY, 2015, 68 (08) : 40 - 46
  • [3] Single molecule sensing by nanopores and nanopore devices
    Gu, Li-Qun
    Shim, Ji Wook
    ANALYST, 2010, 135 (03) : 441 - 451
  • [4] Biological nanopores for single-molecule sensing
    Mayer, Simon Finn
    Cao, Chan
    Dal Peraro, Matteo
    ISCIENCE, 2022, 25 (04)
  • [5] Single-molecule study for a graphene-based nanoposition sensor
    Mazzamuto, G.
    Tabani, A.
    Pazzagli, S.
    Rizvi, S.
    Reserbat-Plantey, A.
    Schaedler, K.
    Navickaite, G.
    Gaudreau, L.
    Cataliotti, F. S.
    Koppens, F.
    Toninelli, C.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [6] Recent Advances in Graphene-Based Membranes with Nanochannels and Nanopores
    Lin, Tongxi
    Wen, Xinyue
    Ren, Xiaojun
    Quintano, Vanesa
    Andreeva, Daria V.
    Novoselov, Kostya S.
    Joshi, Rakesh
    SMALL STRUCTURES, 2024,
  • [7] DNA Nanostructures for Single Molecule Protein Sensing with Nanopores
    Bell, Nicholas A. W.
    Kong, Jinglin
    Keyser, Ulrich F.
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 654A - 654A
  • [8] Keratinocytes are capable of selectively sensing low amounts of graphene-based materials: Implications for cutaneous applications
    Fusco, Laura
    Pelin, Marco
    Mukherjee, Sourav
    Keshavan, Sandeep
    Sosa, Silvio
    Martin, Cristina
    Gonzalez, Viviana
    Vazquez, Ester
    Prato, Maurizio
    Fadeel, Bengt
    Tubaro, Aurelia
    CARBON, 2020, 159 : 598 - 610
  • [9] Chemically tailoring nanopores for single-molecule sensing and glycomics
    James T. Hagan
    Brian S. Sheetz
    Y.M. Nuwan D.Y. Bandara
    Buddini I. Karawdeniya
    Melissa A. Morris
    Robert B. Chevalier
    Jason R. Dwyer
    Analytical and Bioanalytical Chemistry, 2020, 412 : 6639 - 6654
  • [10] Chemically tailoring nanopores for single-molecule sensing and glycomics
    Hagan, James T.
    Sheetz, Brian S.
    Bandara, V. M. Nuwan D. Y.
    Karawdeniya, Buddini, I
    Morris, Melissa A.
    Chevalier, Robert B.
    Dwyer, Jason R.
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2020, 412 (25) : 6639 - 6654