WEIGHTED KERNEL OPERATORS Lp(x) (R+) SPACES

被引:4
|
作者
Meskhi, Alexander [1 ,2 ]
Zaighum, Muhammad Asad [3 ,4 ]
机构
[1] I Javakhishvili Tbilisi State Univ, A Razmadze Math Inst, Dept Math Anal, 6 Tamarashvili Str, Tbilisi 0177, Georgia
[2] Georgian Tech Univ, Fac Informat & Control Syst, Dept Math, 77 Kostava St, Tbilisi, Georgia
[3] Riphah Int Univ, Dept Math & Stat, I-14, Islamabad, Pakistan
[4] Pontificia Univ Javeriana, Dept Matemat, Fac Ciencias, Cra 7a,43-82, Bogota, Colombia
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2016年 / 10卷 / 03期
基金
美国国家科学基金会;
关键词
Variable exponent Lebesgue spaces; positive kernel operator; boundedness; compactness; measure of non-compactness; MAXIMAL-FUNCTION; COMPACTNESS; BOUNDEDNESS; INEQUALITY;
D O I
10.7153/jmi-10-50
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Necessary and sufficient conditions weight v governing the boundedness/compactness of the weighted kernel operator K(k)f(x) - v(x) integral(x)(0)(x,t)f(t)dt from the variable exponent Lebesgue spaces L-q(x) (R+) into another one L-p(x) (R+) is established under the local log-Holder continuity condition and the decay condition at infinity on exponents. The distance between K-v and the class of compact integral operators acting from L-p(x) (R+) to L-q(x) (R+) (measure of non-compactness) is also estimated from above and below.
引用
收藏
页码:623 / 639
页数:17
相关论文
共 50 条