On Hilfer generalized proportional fractional derivative

被引:41
|
作者
Ahmed, Idris [1 ,3 ]
Kumam, Poom [1 ,2 ]
Jarad, Fahd [4 ]
Borisut, Piyachat [1 ]
Jirakitpuwapat, Wachirapong [1 ]
机构
[1] King Mongkuts Univ Technol Thonburi KMUTT, KMUTT Fixed Point Theory & Applicat Res Grp KUMTT, Dept Math, KMUTTFixed Point Res Lab,Fac Sci, Room SCL 802 Fixed Point Lab,Sci Lab Bldg, Bangkok 10140, Thailand
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 40402, Taiwan
[3] Sule Lamido Univ, Dept Math & Comp Sci, PMB 048, Kafin Hausa, Jigawa State, Nigeria
[4] Cankaya Univ, Dept Math, TR-06790 Ankara, Turkey
关键词
Existence; Proportional fractional derivative; Fixed point theorems; Nonlocal condition; Volterra integral equation; 26A33; 34A12; 34A43; 34D20;
D O I
10.1186/s13662-020-02792-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by the Hilfer and the Hilfer-Katugampola fractional derivative, we introduce in this paper a new Hilfer generalized proportional fractional derivative, which unifies the Riemann-Liouville and Caputo generalized proportional fractional derivative. Some important properties of the proposed derivative are presented. Based on the proposed derivative, we consider a nonlinear fractional differential equation with nonlocal initial condition and show that this equation is equivalent to the Volterra integral equation. In addition, the existence and uniqueness of solutions are proven using fixed point theorems. Furthermore, we offer two examples to clarify the results.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] On Hilfer generalized proportional fractional derivative
    Idris Ahmed
    Poom Kumam
    Fahd Jarad
    Piyachat Borisut
    Wachirapong Jirakitpuwapat
    [J]. Advances in Difference Equations, 2020
  • [2] On ψ-Hilfer generalized proportional fractional operators
    Mallah, Ishfaq
    Ahmed, Idris
    Akgul, Ali
    Jarad, Fahd
    Alha, Subhash
    [J]. AIMS MATHEMATICS, 2021, 7 (01): : 82 - 102
  • [3] Generalized fractional Hilfer integral and derivative
    Valdes, Juan E. Napoles
    [J]. CONTRIBUTIONS TO MATHEMATICS, 2020, 2 : 55 - 60
  • [4] On Hilfer Generalized Proportional Nabla Fractional Difference Operators
    Wang, Qiushuang
    Xu, Run
    [J]. MATHEMATICS, 2022, 10 (15)
  • [5] Nonlinear fractional differential equations and their existence via fixed point theory concerning to Hilfer generalized proportional fractional derivative
    Rashid, Saima
    Ahmad, Abdulaziz Garba
    Jarad, Fahd
    Alsaadi, Ateq
    [J]. AIMS MATHEMATICS, 2022, 8 (01): : 382 - 403
  • [6] On fuzzy Volterra-Fredholm integrodifferential equation associated with Hilfer-generalized proportional fractional derivative
    Rashid, Saima
    Jarad, Fahd
    Abualnaja, Khadijah M.
    [J]. AIMS MATHEMATICS, 2021, 6 (10): : 10920 - 10946
  • [7] FRACTIONAL INTEGRODIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITIONS AND GENERALIZED HILFER FRACTIONAL DERIVATIVE
    Wahash, H. A.
    Abdo, M. S.
    Panchal, S. K.
    [J]. UFA MATHEMATICAL JOURNAL, 2019, 11 (04): : 151 - 170
  • [8] On the Ψ-Hilfer fractional derivative
    Vanterler da C. Sousa, J.
    Capelas de Oliveira, E.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 60 : 72 - 91
  • [9] On a class of differential inclusions in the frame of generalized Hilfer fractional derivative
    Lachouri, Adel
    Abdo, Mohammed S.
    Ardjouni, Abdelouaheb
    Abdalla, Bahaaeldin
    Abdeljawad, Thabet
    [J]. AIMS MATHEMATICS, 2021, 7 (03): : 3477 - 3493
  • [10] On a Nonlocal Coupled System of Hilfer Generalized Proportional Fractional Differential Equations
    Samadi, Ayub
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    [J]. SYMMETRY-BASEL, 2022, 14 (04):