A high-speed tracking algorithm for dense granular media

被引:7
|
作者
Cerda, Mauricio [1 ,2 ]
Navarro, Cristobal A. [3 ]
Silva, Juan [4 ,6 ]
Waitukaitis, Scott R. [5 ]
Mujica, Nicolas [6 ]
Hitschfeld, Nancy [4 ]
机构
[1] Univ Chile, Inst Biomed Sci, Anat & Dev Biol Program, Fac Med, POB 70031, Santiago, Chile
[2] Biomed Neurosci Inst, Independencia 1027, Santiago, Chile
[3] Univ Austral Chile, Fac Ciencias Ingn, Inst Informat, Gen Lagos 2086, Valdivia, Chile
[4] Univ Chile, Fac Ciencias Fis & Matemat, Dept Ciencias Computat, Ave Beauchef 851, Santiago, Chile
[5] Leiden Univ, Leiden Inst Phys, Niels Bohrweg 2, NL-2333 CA Leiden, Netherlands
[6] Univ Chile, Fac Ciencias Fis & Matemat, Dept Fis, Ave Blanco Encalda 2008, Santiago, Chile
基金
美国国家科学基金会;
关键词
Particle tracking; Peak detection; GPU computing; Granular media;
D O I
10.1016/j.cpc.2018.02.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Many fields of study, including medical imaging, granular physics, colloidal physics, and active matter, require the precise identification and tracking of particle-like objects in images. While many algorithms exist to track particles in diffuse conditions, these often perform poorly when particles are densely packed together-as in, for example, solid-like systems of granular materials. Incorrect particle identification can have significant effects on the calculation of physical quantities, which makes the development of more precise and faster tracking algorithms a worthwhile endeavor. In this work, we present a new tracking algorithm to identify particles in dense systems that is both highly accurate and fast. We demonstrate the efficacy of our approach by analyzing images of dense, solid-state granular media, where we achieve an identification error of 5% in the worst evaluated cases. Going further, we propose a parallelization strategy for our algorithm using a GPU, which results in a speedup of up to 10x when compared to a sequential CPU implementation in C and up to 40x when compared to the reference MATLAB library widely used for particle tracking. Our results extend the capabilities of state-of-the-art particle tracking methods by allowing fast, high-fidelity detection in dense media at high resolutions. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:8 / 16
页数:9
相关论文
共 50 条
  • [1] High-speed tracking of rupture and clustering in freely falling granular streams
    Royer, John R.
    Evans, Daniel J.
    Oyarte, Loreto
    Guo, Qiti
    Kapit, Eliot
    Moebius, Matthias E.
    Waitukaitis, Scott R.
    Jaeger, Heinrich M.
    [J]. NATURE, 2009, 459 (7250) : 1110 - 1113
  • [2] High-speed tracking of rupture and clustering in freely falling granular streams
    John R. Royer
    Daniel J. Evans
    Loreto Oyarte
    Qiti Guo
    Eliot Kapit
    Matthias E. Möbius
    Scott R. Waitukaitis
    Heinrich M. Jaeger
    [J]. Nature, 2009, 459 : 1110 - 1113
  • [3] High-speed granular chute flows
    Holyoake, Alex J.
    McElwaine, Jim N.
    [J]. JOURNAL OF FLUID MECHANICS, 2012, 710 : 35 - 71
  • [4] A STUDY OF THREE-PHASE FRACTURING IN GRANULAR MEDIA USING HIGH-SPEED IMAGING
    Ozturk, Deren
    Sandnes, Bjornar
    [J]. JOURNAL OF POROUS MEDIA, 2019, 22 (08) : 987 - 1000
  • [5] New patterns in high-speed granular flows
    Brodu, Nicolas
    Delannay, Renaud
    Valance, Alexandre
    Richard, Patrick
    [J]. JOURNAL OF FLUID MECHANICS, 2015, 769 : 218 - 228
  • [6] HIGH-SPEED TRACKING TIME SELECTOR
    KOROLEV, MV
    [J]. INSTRUMENTS AND EXPERIMENTAL TECHNIQUES-USSR, 1968, (06): : 1380 - &
  • [7] MOTION OF HIGH-SPEED JET IN THE DENSE MEDIUM
    KOVTUN, VI
    MAZANKO, VF
    [J]. ZHURNAL TEKHNICHESKOI FIZIKI, 1988, 58 (04): : 825 - 827
  • [8] A Compensatory Algorithm for High-Speed Visual Object Tracking Based on Markov Chain
    Song, Zhenzhong
    Peng, Xiaoqing
    He, Huijun
    Wang, Gaoang
    [J]. ADVANCES IN ELECTRONIC COMMERCE, WEB APPLICATION AND COMMUNICATION, VOL 2, 2012, 149 : 497 - +
  • [9] A High-Speed Multi-Scale Kernel Correlation Filter Tracking Algorithm
    Fu, Bin
    Song, Zongxi
    Wang, Feng
    Gao, Wei
    Zhang, Shuang
    Liu, Jiwei
    [J]. ELEVENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2019), 2019, 11179
  • [10] Heterogeneous vision chip and LBP-based algorithm for high-speed tracking
    Yang, Jie
    Shi, Cong
    Liu, Liyuan
    Wu, Nanjian
    [J]. ELECTRONICS LETTERS, 2014, 50 (06) : 438 - U1