On a diophantine equation of Cassels

被引:5
|
作者
Luca, F.
Walsh, P. G.
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Morelia 58089, Michoacan, Mexico
[2] Univ Ottawa, Dept Math, Ottawa, ON K1N 6N5, Canada
关键词
D O I
10.1017/S001708950500251X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
fJWS. Cassels gave a solution to the problem of determining all instances of the sum of three consecutive cubes being a square. This amounts to finding all integer solutions to the Diophantine equation y(2) = 3x(x(2) + 2). We describe an alternative approach to solving not only this equation, but any equation of the type y(2) = nx(x(2) + 2), with n a natural number. Moreover, we provide an explicit upper bound for the number of solutions of such Diophantine equations. The method we present uses the ingenious work of Wilhelm Ljunggren, and a recent improvement by the authors.
引用
收藏
页码:303 / 307
页数:5
相关论文
共 50 条
  • [1] ON A VARIANT OF A DIOPHANTINE EQUATION OF CASSELS
    Togbe, Alain
    Yuan, Pingzhi
    GLASNIK MATEMATICKI, 2011, 46 (02) : 325 - 331
  • [2] A solution to a problem of Cassels and Diophantine properties of cubic numbers
    Shapira, Uri
    ANNALS OF MATHEMATICS, 2011, 173 (01) : 543 - 557
  • [3] Solution of Cassels' Problem on a Diophantine Constant over Function Fields
    Bank, Efrat
    Nesharim, Erez
    Pedersen, Steffen Hojris
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (18) : 5451 - 5474
  • [4] A DIOPHANTINE EQUATION
    RUSS, S
    AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (07): : 787 - &
  • [5] DIOPHANTINE EQUATION
    UCHIYAMA, S
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1979, 55 (09) : 367 - 369
  • [6] A DIOPHANTINE EQUATION
    IYER, RV
    AMERICAN MATHEMATICAL MONTHLY, 1961, 68 (06): : 578 - &
  • [7] DIOPHANTINE EQUATION
    HELLEGOUARCH, Y
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (19): : 1385 - +
  • [8] On a diophantine equation
    Abu Muriefah, FS
    Arif, SA
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1998, 57 (02) : 189 - 198
  • [9] On the Diophantine Equation
    Zahari, N. M.
    Sapar, S. H.
    Atan, Mohd K. A.
    PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM20): RESEARCH IN MATHEMATICAL SCIENCES: A CATALYST FOR CREATIVITY AND INNOVATION, PTS A AND B, 2013, 1522 : 959 - 966
  • [10] On a diophantine equation
    Leont'ev, V. K.
    MATHEMATICAL NOTES, 2016, 100 (3-4) : 403 - 412