THREE-TERM ARITHMETIC PROGRESSIONS AND SUMSETS

被引:7
|
作者
Sanders, Tom [1 ]
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WA, England
关键词
arithmetic progressions; Fourier transform; FREIMANS THEOREM; INTEGER SETS; PROOF;
D O I
10.1017/S0013091506001398
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that G is an abelian group and that A subset of G is finite and contains no non-trivial three-term arithmetic progressions. We show that vertical bar A+A vertical bar >>(epsilon)vertical bar A vertical bar(log vertical bar A vertical bar)(1/3-epsilon).
引用
收藏
页码:211 / 233
页数:23
相关论文
共 50 条
  • [1] On the Structure of Sets with Few Three-Term Arithmetic Progressions
    Croot, Ernie
    ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [2] Arithmetic progressions in sumsets
    Green, B
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (03) : 584 - 597
  • [3] On the Distribution of Three-Term Arithmetic Progressions in Sparse Subsets of Fpn
    Nguyen, Hoi H.
    COMBINATORICS PROBABILITY & COMPUTING, 2011, 20 (05): : 777 - 791
  • [4] Arithmetic progressions in sumsets
    B. Green
    Geometric & Functional Analysis GAFA, 2002, 12 : 584 - 597
  • [5] ARITHMETIC PROGRESSIONS IN SUMSETS
    RUZSA, IZ
    ACTA ARITHMETICA, 1991, 60 (02) : 191 - 202
  • [6] Characterization of Order Structures Avoiding Three-term Arithmetic Progressions
    Hirose, Minoru
    Saito, Shingo
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2024,
  • [7] On the structure of steps of three-term arithmetic progressions in a dense set of integers
    Candela, P.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2010, 42 : 1 - 14
  • [8] On infinite arithmetic progressions in sumsets
    Yong-Gao Chen
    Quan-Hui Yang
    Lilu Zhao
    Science China Mathematics, 2023, 66 : 2669 - 2682
  • [9] On infinite arithmetic progressions in sumsets
    Yong-Gao Chen
    Quan-Hui Yang
    Lilu Zhao
    Science China(Mathematics), 2023, 66 (12) : 2669 - 2682
  • [10] On infinite arithmetic progressions in sumsets
    Chen, Yong-Gao
    Yang, Quan-Hui
    Zhao, Lilu
    SCIENCE CHINA-MATHEMATICS, 2023, 66 (12) : 2669 - 2682