The bi-embeddability relation for finitely generated groups

被引:1
|
作者
Thomas, Simon [1 ]
Williams, Jay [2 ]
机构
[1] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
[2] CALTECH, Dept Math, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
COMPLEXITY;
D O I
10.1112/jlms/jdt026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There does not exist a Borel selection of an isomorphism class within each bi-embeddability class of finitely generated groups.
引用
收藏
页码:483 / 500
页数:18
相关论文
共 50 条
  • [1] The bi-embeddability relation for finitely generated groups II
    Thomas, Simon
    Williams, Jay
    [J]. ARCHIVE FOR MATHEMATICAL LOGIC, 2016, 55 (3-4) : 385 - 396
  • [2] The bi-embeddability relation for finitely generated groups II
    Simon Thomas
    Jay Williams
    [J]. Archive for Mathematical Logic, 2016, 55 : 385 - 396
  • [3] THE BI-EMBEDDABILITY RELATION FOR COUNTABLE ABELIAN GROUPS
    Calderoni, Filippo
    Thomas, Simon
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (03) : 2237 - 2254
  • [4] Elementary Bi-embeddability Spectra of Structures
    Rossegger, Dino
    [J]. SAILING ROUTES IN THE WORLD OF COMPUTATION, 2018, 10936 : 349 - 358
  • [5] ANALYTIC EQUIVALENCE RELATIONS AND BI-EMBEDDABILITY
    Friedman, Sy-David
    Motto Ros, Luca
    [J]. JOURNAL OF SYMBOLIC LOGIC, 2011, 76 (01) : 243 - 266
  • [6] Bi-embeddability spectra and bases of spectra
    Fokina, Ekaterina
    Rossegger, Dino
    San Mauro, Luca
    [J]. MATHEMATICAL LOGIC QUARTERLY, 2019, 65 (02) : 228 - 236
  • [7] ON THE COMPLEXITY OF THE RELATIONS OF ISOMORPHISM AND BI-EMBEDDABILITY
    Motto Ros, Luca
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (01) : 309 - 323
  • [8] Uncountable structures are not classifiable up to bi-embeddability
    Calderoni, Filippo
    Mildenberger, Heike
    Ros, Luca Motto
    [J]. JOURNAL OF MATHEMATICAL LOGIC, 2020, 20 (01)
  • [9] The commensurability relation for finitely generated groups
    Thomas, Simon
    [J]. JOURNAL OF GROUP THEORY, 2009, 12 (06) : 901 - 909
  • [10] On the bi-embeddability of certain Steiner triple systems of order 15
    Bennett, GK
    Grannell, MJ
    Griggs, TS
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2002, 23 (05) : 499 - 505