Interharmonics in internal gravity waves generated by tide-topography interaction

被引:27
|
作者
Korobov, Alexander S. [1 ]
Lamb, Kevin G. [1 ]
机构
[1] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1017/S0022112008002449
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The dynamics and spectrum of internal gravity waves generated in a linearly stratified fluid by tidal flow over a flat-topped ridge are investigated at five different latitudes using in inviscid two-dimensional numerical model. The resulting wave field includes progressive freely propagating waves which satisfy the dispersion relation, and forced waves which are trapped non-propagating oscillations with frequencies Outside the internal wave band. The flow is largely stable with respect to shear instabilities,, and. throughout the runs, there is a negligibly small amount of overturning which is confined to the highly nonlinear regions along the sloping topography and where tidal beams reflect from the boundaries. The Wave Spectrum exhibits a self-similar Structure with prominent peaks at tidal harmonics and interharmonics, Whose magnitudes decay exponentially with frequency. Two strong subharmonics are generated by an instability official beams which is particularly strong for near-critical latitudes where the Coriolis Frequency is half the tidal frequency. When both subharmonics are within the free internal wave range (as in cases 0 degrees-20 degrees N), they form a resonant triad with the tidal harmonic. When at least one of the two subharmonics is Outside of the ran,,e (as in cases 30 degrees-40 degrees N) the observed instability is no longer a resonant triad interaction. We argue that the two subharmonics are generated by parametric subharmonic instability that can produce both progressive and forced waves. Other interharmonics are produced through wave-wave interactions and are not an artefact of Doppler shifting as assumed by previous authors. As the two subharmonics are, in general, not proper fractions of the tidal frequency, the wave-wave interactions are capable of transferring energy to a continuum of frequencies.
引用
收藏
页码:61 / 95
页数:35
相关论文
共 50 条
  • [1] 2 EXPERIMENTAL STUDIES OF INTERNAL WAVES GENERATED BY TIDE-TOPOGRAPHY INTERACTION
    RENOUARD, DP
    BAEY, JM
    [J]. DYNAMICS OF ATMOSPHERES AND OCEANS, 1993, 19 (1-4) : 205 - 232
  • [2] Revisiting internal wave generation by tide-topography interaction
    Mohri, Ken
    Hibiya, Toshiyuki
    Iwamae, Nobuyuki
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2010, 115
  • [3] Tide-topography interaction along the eastern Brazilian shelf
    Pereira, AF
    Belém, AL
    Castro, BM
    Geremias, R
    [J]. CONTINENTAL SHELF RESEARCH, 2005, 25 (12-13) : 1521 - 1539
  • [4] Experimental study of internal gravity waves generated by supercritical topography
    Zhang, H. P.
    King, B.
    Swinney, Harry L.
    [J]. PHYSICS OF FLUIDS, 2007, 19 (09)
  • [5] Internal gravity waves generated by convective plumes
    Ansong, Joseph K.
    Sutherland, Bruce R.
    [J]. JOURNAL OF FLUID MECHANICS, 2010, 648 : 405 - 434
  • [6] Stratified turbulence generated by internal gravity waves
    Waite, ML
    Bartello, P
    [J]. JOURNAL OF FLUID MECHANICS, 2006, 546 : 313 - 339
  • [7] Internal gravity waves generated by an impulsive plume
    Brandt, Alan
    Shipley, Kara R.
    [J]. PHYSICAL REVIEW FLUIDS, 2019, 4 (01)
  • [8] The influence of tide-topography interaction on low-frequency heat and nutrient fluxes.: Application to Cape Trafalgar
    Vargas-Yáñez, M
    Viola, TS
    Jorge, FP
    Rubín, JP
    García-Martínez, MC
    [J]. CONTINENTAL SHELF RESEARCH, 2002, 22 (01) : 115 - 139
  • [9] INTERACTION TRAPPING OF INTERNAL GRAVITY WAVES
    PHILLIPS, OM
    [J]. JOURNAL OF FLUID MECHANICS, 1968, 34 : 407 - &
  • [10] TIDE-TOPOGRAPHY INTERACTIONS IN A STRATIFIED SHELF SEA .2. BOTTOM TRAPPED INTERNAL TIDES AND BAROCLINIC RESIDUAL CURRENTS
    MAAS, LRM
    ZIMMERMAN, JTF
    [J]. GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 1989, 45 (1-2): : 37 - 69