共 50 条
On inverse systems and squarefree decomposition of zero-dimensional polynomial ideals
被引:1
|作者:
Heiss, W
[1
]
Oberst, U
[1
]
Pauer, F
[1
]
机构:
[1] Univ Innsbruck, Inst Math, A-6020 Innsbruck, Austria
关键词:
dual basis;
inverse system;
squarefree decomposition;
systems of generators of minimal length;
D O I:
10.1016/j.jsc.2004.03.009
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
Let I be a zero-dimensional ideal in a polynomial ring F[s] := F[s(1),..., s(n)] over an arbitrary field F. We show how to compute an F-basis of the inverse system I(perpendicular to) of I. We describe the F[s]-module I(perpendicular to) generators and relations and characterise the minimal length of a system of F[s]-generators of I(perpendicular to). If the primary decomposition of I is known, such a system can be computed. Finally we generalise the wellknown notion of squarefree decomposition of a univariate polynomial to the case of zero-dimensional ideals in F[s] and present an algorithm to compute this decomposition. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:261 / 284
页数:24
相关论文