ContIG: Self-supervised Multimodal Contrastive Learning for Medical Imaging with Genetics

被引:25
|
作者
Taleb, Aiham [1 ]
Kirchler, Matthias [1 ,2 ]
Monti, Remo [1 ]
Lippert, Christoph [1 ,3 ]
机构
[1] Univ Potsdam, Hasso Plattner Inst Digital Engn, Potsdam, Germany
[2] TU Kaiserslautern, Kaiserslautern, Germany
[3] Icahn Sch Med Mt Sinai, Hasso Plattner Inst Digital Hlth, Nyc, NY USA
关键词
ASSOCIATION; HERITABILITY; PREDICTION; MODELS; RISK;
D O I
10.1109/CVPR52688.2022.02024
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
High annotation costs are a substantial bottleneck in applying modern deep learning architectures to clinically relevant medical use cases, substantiating the need for novel algorithms to learn from unlabeled data. In this work, we propose ContIG, a self-supervised method that can learn from large datasets of unlabeled medical images and genetic data. Our approach aligns images and several genetic modalities in the feature space using a contrastive loss. We design our method to integrate multiple modalities of each individual person in the same model end-to-end, even when the available modalities vary across individuals. Our procedure outperforms state-of-the-art self-supervised methods on all evaluated downstream benchmark tasks. We also adapt gradient-based explainability algorithms to better understand the learned cross-modal associations between the images and genetic modalities. Finally, we perform genome-wide association studies on the features learned by our models, uncovering interesting relationships between images and genetic data.(1)
引用
收藏
页码:20876 / 20889
页数:14
相关论文
共 50 条
  • [1] Multimodal Self-supervised Learning for Medical Image Analysis
    Taleb, Aiham
    Lippert, Christoph
    Klein, Tassilo
    Nabi, Moin
    INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2021, 2021, 12729 : 661 - 673
  • [2] A Review of Predictive and Contrastive Self-supervised Learning for Medical Images
    Wang, Wei-Chien
    Ahn, Euijoon
    Feng, Dagan
    Kim, Jinman
    MACHINE INTELLIGENCE RESEARCH, 2023, 20 (04) : 483 - 513
  • [3] Self-supervised Segment Contrastive Learning for Medical Document Representation
    Abro, Waheed Ahmed
    Kteich, Hanane
    Bouraoui, Zied
    ARTIFICIAL INTELLIGENCE IN MEDICINE, PT I, AIME 2024, 2024, 14844 : 312 - 321
  • [4] A Review of Predictive and Contrastive Self-supervised Learning for Medical Images
    Wei-Chien Wang
    Euijoon Ahn
    Dagan Feng
    Jinman Kim
    Machine Intelligence Research, 2023, 20 : 483 - 513
  • [5] Adversarial Self-Supervised Contrastive Learning
    Kim, Minseon
    Tack, Jihoon
    Hwang, Sung Ju
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
  • [6] A Survey on Contrastive Self-Supervised Learning
    Jaiswal, Ashish
    Babu, Ashwin Ramesh
    Zadeh, Mohammad Zaki
    Banerjee, Debapriya
    Makedon, Fillia
    TECHNOLOGIES, 2021, 9 (01)
  • [7] Self-Supervised Learning: Generative or Contrastive
    Liu, Xiao
    Zhang, Fanjin
    Hou, Zhenyu
    Mian, Li
    Wang, Zhaoyu
    Zhang, Jing
    Tang, Jie
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) : 857 - 876
  • [8] Self-Supervised Contrastive Learning for Medical Time Series: A Systematic Review
    Liu, Ziyu
    Alavi, Azadeh
    Li, Minyi
    Zhang, Xiang
    SENSORS, 2023, 23 (09)
  • [9] A comprehensive perspective of contrastive self-supervised learning
    Songcan CHEN
    Chuanxing GENG
    Frontiers of Computer Science, 2021, (04) : 102 - 104
  • [10] On Compositions of Transformations in Contrastive Self-Supervised Learning
    Patrick, Mandela
    Asano, Yuki M.
    Kuznetsova, Polina
    Fong, Ruth
    Henriques, Joao F.
    Zweig, Geoffrey
    Vedaldi, Andrea
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9557 - 9567