A Crown Jewel Defense Strategy Based Particle Swarm Optimization

被引:0
|
作者
Lin, Ling [1 ]
Ji, Zhen [1 ]
He, Shan [2 ]
Zhu, Zexuan [1 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen City Key Lab Embedded Syst Design, Shenzhen 518060, Peoples R China
[2] Univ Birmingham, Sch Comp Sci, Birmingham B15 2TT, W Midlands, England
来源
2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC) | 2012年
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Particle swarm optimization (PSO) is a metaheuristic algorithm that is easy to implement and performs well on various optimization problems. However, PSO is sensitive to initialization due to its rapid convergence which leads to the lack of population diversity and premature convergence. To solve this problem, a jumping-out strategy named crown jewel defense (CJD) is introduced in this paper. CJD is used to relocate the global best position and reinitializes all particles' personal best position when the swarm is trapped in local optima. Taking the advantage of CJD strategy, the swarm can jump out of the local optimal region without being dragged back and the performance of PSO becomes more robust to the initialization. Experimental results on benchmark functions show that the CJD-based PSO are comparable to or better than the other representative state-of-the-art PSO.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A Local Best Particle Swarm Optimization Based on Crown Jewel Defense Strategy
    Zhou, Jiarui
    Yang, Junshan
    Lin, Ling
    Zhu, Zexuan
    Ji, Zhen
    INTERNATIONAL JOURNAL OF SWARM INTELLIGENCE RESEARCH, 2015, 6 (01) : 41 - 63
  • [2] Particle swarm optimization based on mutation strategy
    Gao, Li-Qun
    Wu, Pei-Feng
    Zou, De-Xuan
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2010, 31 (11): : 1530 - 1533
  • [3] Particle swarm optimization based on dimensional learning strategy
    Xu, Guiping
    Cui, Quanlong
    Shi, Xiaohu
    Ge, Hongwei
    Zhan, Zhi-Hui
    Lee, Heow Pueh
    Liang, Yanchun
    Tai, Ran
    Wu, Chunguo
    SWARM AND EVOLUTIONARY COMPUTATION, 2019, 45 : 33 - 51
  • [4] Diagnostic Strategy Optimization Based On Particle Swarm Algorithm
    Zhang, Yansheng
    Qiao, Zhongtao
    Jing, Jianhui
    ADVANCES IN DESIGN TECHNOLOGY, VOLS 1 AND 2, 2012, 215-216 : 555 - 560
  • [5] Particle Swarm Optimization Based on the Winner's Strategy
    Aote, Shailendra S.
    Raghuwanshi, M. M.
    Malik, L. G.
    SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING (SEMCCO 2015), 2016, 9873 : 201 - 213
  • [6] Improved particle swarm optimization based on genetic strategy
    Shen, Xi
    Huang, Zhendi
    Huang, Yuejin
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2009, 30 (SUPPL.): : 107 - 114
  • [7] Optimization of Terminal Defense System Deployment Based on Improved Particle Swarm Optimization
    You, Hao
    Zhao, Jiufen
    Shi, Shaokun
    Tang, Qinhong
    2018 IEEE CSAA GUIDANCE, NAVIGATION AND CONTROL CONFERENCE (CGNCC), 2018,
  • [8] A parameter selection strategy for particle swarm optimization based on particle positions
    Zhang, Wei
    Ma, Di
    Wei, Jin-jun
    Liang, Hai-feng
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (07) : 3576 - 3584
  • [9] Heterogeneous Strategy Particle Swarm Optimization
    Du, Wen-Bo
    Ying, Wen
    Yan, Gang
    Zhu, Yan-Bo
    Cao, Xian-Bin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2017, 64 (04) : 467 - 471
  • [10] A Particle Swarm Optimization Algorithm Based on Genetic Selection Strategy
    Tang, Qin
    Zeng, Jianyou
    Li, Hui
    Li, Changhe
    Liu, Yong
    ADVANCES IN NEURAL NETWORKS - ISNN 2009, PT 3, PROCEEDINGS, 2009, 5553 : 126 - +