AutoForecast: Automatic Time-Series Forecasting Model Selection

被引:5
|
作者
Abdallah, Mustafa [1 ]
Rossi, Ryan [2 ]
Mahadik, Kanak [2 ]
Kim, Sungchul [2 ]
Zhao, Handong [2 ]
Bagchi, Saurabh [3 ]
机构
[1] Indiana Univ Purdue Univ Indianapolis, Indianapolis, IN 46202 USA
[2] Adobe Syst, San Jose, CA USA
[3] Purdue Univ, W Lafayette, IN 47907 USA
关键词
Time-series forecasting; Model selection; AutoML; Meta-learning;
D O I
10.1145/3511808.3557241
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we develop techniques for fast automatic selection of the best forecasting model for a new unseen time-series dataset, without having to first train (or evaluate) all the models on the new time-series data to select the best one. In particular, we develop a forecasting meta-learning approach called AUTOFORECAST that allows for the quick inference of the best time-series forecasting model for an unseen dataset. Our approach learns both forecasting models performances over time horizon of same dataset and task similarity across different datasets. The experiments demonstrate the effectiveness of the approach over state-of-the-art (SOTA) single and ensemble methods and several SOTA meta-learners (adapted to our problem) in terms of selecting better forecasting models (i.e., 2X gain) for unseen tasks for univariate and multivariate testbeds.
引用
收藏
页码:5 / 14
页数:10
相关论文
共 50 条
  • [1] Automatic Model Selection in Ensembles for Time Series Forecasting
    Fonseca, R.
    Gomez, P.
    [J]. IEEE LATIN AMERICA TRANSACTIONS, 2016, 14 (08) : 3811 - 3819
  • [2] Model Monitoring and Dynamic Model Selection in Travel Time-Series Forecasting
    Candela, Rosa
    Michiardi, Pietro
    Filippone, Maurizio
    Zuluaga, Maria A.
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: APPLIED DATA SCIENCE TRACK, ECML PKDD 2020, PT IV, 2021, 12460 : 513 - 529
  • [3] Metric-based model selection for time-series forecasting
    Bengio, Y
    Chapados, N
    [J]. NEURAL NETWORKS FOR SIGNAL PROCESSING XII, PROCEEDINGS, 2002, : 13 - 22
  • [4] Evolutionary Feature Selection for Time-Series Forecasting
    Linares-Barrera, M. L.
    Jimenez-Navarro, M. J.
    Brito, I. Sofia
    Riquelme, J. C.
    Martinez-Ballesteros, M.
    [J]. 39TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2024, 2024, : 395 - 397
  • [5] A clustering model for time-series forecasting
    Coric, Rebeka
    Dumic, Mateja
    Jelic, Slobodan
    [J]. 2019 42ND INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2019, : 1105 - 1109
  • [6] Time-Series Feature Selection for Solar Flare Forecasting
    Velanki, Yagnashree
    Hosseinzadeh, Pouya
    Boubrahimi, Soukaina Filali
    Hamdi, Shah Muhammad
    [J]. UNIVERSE, 2024, 10 (09)
  • [7] A refined fuzzy time-series model for forecasting
    Yu, HK
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 346 (3-4) : 657 - 681
  • [8] MLTF: Model less time-series forecasting
    Samanta, Subhrajit
    Prakash, P. K. S.
    Chilukuri, Srinivas
    [J]. INFORMATION SCIENCES, 2022, 593 : 364 - 384
  • [9] A NEURAL NETWORK MODEL FOR TIME-SERIES FORECASTING
    Morariu, Nicolae
    Iancu, Eugenia
    Vlad, Sorin
    [J]. ROMANIAN JOURNAL OF ECONOMIC FORECASTING, 2009, 12 (04): : 213 - 223
  • [10] FORECASTING IN MULTIVARIATE TIME-SERIES - THE MARMA MODEL
    DEFRANK, NMC
    [J]. BIOMETRICS, 1985, 41 (04) : 1091 - 1091