Summability of canard-heteroclinic saddle connections

被引:1
|
作者
Kenens, Karel [1 ]
机构
[1] Hasselt Univ, Dept Math, Martelarenlaan 42, B-3500 Hasselt, Belgium
关键词
Gevrey series; Borel summation; Slow-fast systems; Singular perturbations; Canards;
D O I
10.1016/j.jde.2016.08.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a given (real analytic) slow-fast system {(x) over dot = epsilon f(x, y, epsilon) (y) over dot =g(x, y, epsilon), that admits a slow-fast saddle and that satisfies some mild assumptions, the Borel-summability properties of the saddle separatrix tangent in the direction of the critical curve are investigated: 1-summability is shown. It is also shown that slow-fast saddle connections of canard type have summability properties, in contrast to the typical lack of Borel-summability for canard solutions of general equations. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:5992 / 6028
页数:37
相关论文
共 50 条
  • [1] Saddle connections and heteroclinic orbits for standard maps
    Lomeli, HE
    [J]. NONLINEARITY, 1996, 9 (03) : 649 - 668
  • [2] MODULI FOR HETEROCLINIC CONNECTIONS INVOLVING SADDLE-FOCI AND PERIODIC SOLUTIONS
    Rodrigues, Alexandre A. P.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (07) : 3155 - 3182
  • [3] A Surface of Heteroclinic Connections Between Two Saddle Slow Manifolds in the Olsen Model
    Musoke, Elle
    Krauskopf, Bernd
    Osinga, Hinke M.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (16):
  • [4] On the existence of heteroclinic connections
    Fusco G.
    Gronchi G.F.
    Novaga M.
    [J]. São Paulo Journal of Mathematical Sciences, 2018, 12 (1) : 68 - 81
  • [5] Heteroclinic connections for nonlocal equations
    Dipierro, Serena
    Patrizi, Stefania
    Valdinoci, Enrico
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2019, 29 (14): : 2585 - 2636
  • [6] The genesis trajectory and heteroclinic connections
    Koon, WS
    Lo, MW
    Marsden, JE
    Ross, SD
    [J]. ASTRODYNAMICS 1999, PTS 1-3, 2000, 103 : 2327 - 2343
  • [7] Metric methods for heteroclinic connections
    Monteil, Antonin
    Santambrogio, Filippo
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (03) : 1019 - 1024
  • [8] Dynamics of heteroclinic tangles with an unbroken saddle connection
    Chen, F. J.
    Han, M. A.
    [J]. NONLINEAR DYNAMICS, 2013, 71 (03) : 409 - 415
  • [9] Dynamics of heteroclinic tangles with an unbroken saddle connection
    F. J. Chen
    M. A. Han
    [J]. Nonlinear Dynamics, 2013, 71 : 409 - 415
  • [10] Heteroclinic connections in singularly perturbed systems
    Battelli, Flaviano
    Palmer, Ken
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2008, 9 (3-4): : 431 - 461