Gradient weighted estimates at the natural exponent for quasilinear parabolic equations

被引:5
|
作者
Adimurthi, Karthik [1 ,3 ]
Byun, Sun-Sig [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[3] Tata Inst Fundamental Res, Ctr Applicable Math, Bangalore 560065, Karnataka, India
基金
新加坡国家研究基金会;
关键词
Quasilinear parabolic equations; Muckenhoupt weights; Lipschitz truncation; ELLIPTIC-EQUATIONS; SYSTEMS;
D O I
10.1016/j.aim.2019.03.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain weighted norm inequalities for the spatial gradients of weak solutions to quasilinear parabolic equations with weights in the Muckenhoupt class A(q/p) (Rn+1) for q >= p on non-smooth domains. Here the quasilinear non linearity is modeled after the standard p-Laplacian operator. Until now, all the weighted estimates for the gradient were obtained only for exponents q > p. The results for exponents q > p used the full complicated machinery of the Calderon-Zygmund theory developed over the past few decades, but the constants blow up as q -> p (essentially because the Maximal function is not bounded on L-1). In order to prove the weighted estimates for the gradient at the natural exponent, i.e., q = p, we need to obtain improved a priori estimates below the natural exponent. To this end, we develop the technique of Lipschitz truncation based on [3,25] and obtain significantly improved estimates below the natural exponent. Along the way, we also obtain improved, unweighted Calderon-Zygmund type estimates below the natural exponent which is new even for the linear equations. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:456 / 511
页数:56
相关论文
共 50 条
  • [1] End point gradient estimates for quasilinear parabolic equations with variable exponent growth on nonsmooth domains
    Adimurthi, Karthik
    Byun, Sun-Sig
    Park, Jung-Tae
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (04)
  • [2] End point gradient estimates for quasilinear parabolic equations with variable exponent growth on nonsmooth domains
    Karthik Adimurthi
    Sun-Sig Byun
    Jung-Tae Park
    [J]. Calculus of Variations and Partial Differential Equations, 2021, 60
  • [3] Gradient estimates of periodic solutions for some quasilinear parabolic equations
    Nakao, M
    Ohara, Y
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 204 (03) : 868 - 883
  • [4] Time-interior Gradient Estimates for Quasilinear Parabolic Equations
    Andrews, Ben
    Clutterbuck, Julie
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (01) : 351 - 380
  • [5] Optimal Gradient Estimates for Parabolic Equations in Variable Exponent Spaces
    Byun, Sun-Sig
    Ok, Jihoon
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (08) : 2493 - 2521
  • [6] Gradient estimates for parabolic equations in generalized weighted Morrey spaces
    Vagif Guliyev
    Shamsiyya Muradova
    Mehriban Omarova
    Lubomira Softova
    [J]. Acta Mathematica Sinica, English Series, 2016, 32 : 911 - 924
  • [7] Gradient Estimates for Parabolic Equations in Generalized Weighted Morrey Spaces
    Vagif GULIYEV
    Shamsiyya MURADOVA
    Mehriban OMAROVA
    Lubomira SOFTOVA
    [J]. Acta Mathematica Sinica., 2016, 32 (08) - 924
  • [8] Gradient estimates for parabolic equations in generalized weighted Morrey spaces
    Guliyev, Vagif
    Muradova, Shamsiyya
    Omarova, Mehriban
    Softova, Lubomira
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (08) : 911 - 924
  • [9] Gradient Estimates for Parabolic Equations in Generalized Weighted Morrey Spaces
    Vagif GULIYEV
    Shamsiyya MURADOVA
    Mehriban OMAROVA
    Lubomira SOFTOVA
    [J]. Acta Mathematica Sinica,English Series, 2016, 32 (08) : 911 - 924
  • [10] Weighted gradient estimates for the parabolic p-Laplacian equations
    Yao, Fengping
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 112 : 58 - 68