Hearing the shape of inequivalent spin structures and exotic Dirac operators

被引:3
|
作者
da Rocha, R. [1 ]
Tomaz, A. A. [1 ,2 ]
机构
[1] Fed Univ ABC, Ctr Math, BR-09580210 Santo Andre, SP, Brazil
[2] Fluminense Fed Univ, Inst Phys, Av Litoranea, Niteroi, RJ, Brazil
基金
巴西圣保罗研究基金会;
关键词
exotic spinors; inequivalent spin structures; Dirac operator; heat kernel; Clifford algebras; SPACE; FIELDS;
D O I
10.1088/1751-8121/abacdc
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Exotic spinor fields arise from inequivalent spin structures on non-trivial topological manifolds, M. This induces an additional term in the Dirac operator, defined by the cohomology group H-1(M,Z(2)) that rules Cech cohomology class. This formalism is extended for manifolds of any finite dimension, endowed with a metric of arbitrary signature. The exotic corrections to heat kernel coefficients, relating spectral properties of exotic Dirac operators to the geometric invariants of M, are derived and scrutinized.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] On Spin Structures and Dirac Operators on the Noncommutative Torus
    Mario Paschke
    Andrzej Sitarz
    Letters in Mathematical Physics, 2006, 77 : 317 - 327
  • [2] On spin structures and dirac operators on the noncommutative torus
    Paschke, Mario
    Sitarz, Andrzej
    LETTERS IN MATHEMATICAL PHYSICS, 2006, 77 (03) : 317 - 327
  • [3] Shell, shape and spin/isospin structures of exotic nuclei
    Otsuka, T
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2002, (146): : 6 - 15
  • [4] On the Dirac and Spin-Dirac Operators
    E. A. Notte-Cuello
    Advances in Applied Clifford Algebras, 2010, 20 : 765 - 780
  • [5] On the Dirac and Spin-Dirac Operators
    Notte-Cuello, E. A.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2010, 20 (3-4) : 765 - 780
  • [6] Hearing exotic smooth structures
    Cavenaghi, Leonardo F.
    do O, Joao Marcos
    Speranca, Llohann D.
    ADVANCED NONLINEAR STUDIES, 2025,
  • [7] Dirac structures and Nijenhuis operators
    Bursztyn, Henrique
    Drummond, Thiago
    Netto, Clarice
    MATHEMATISCHE ZEITSCHRIFT, 2022, 302 (02) : 875 - 915
  • [8] Dirac structures and Nijenhuis operators
    Henrique Bursztyn
    Thiago Drummond
    Clarice Netto
    Mathematische Zeitschrift, 2022, 302 : 875 - 915
  • [9] Twisted Higher Spin Dirac Operators
    H. De Schepper
    D. Eelbode
    T. Raeymaekers
    Complex Analysis and Operator Theory, 2014, 8 : 429 - 447
  • [10] Dirac Operators on Hermitian Spin Surfaces
    B. Alexandrov
    S. Ivanov
    Annals of Global Analysis and Geometry, 2000, 18 : 529 - 539