Clustering based on density estimation Using variable kernel and maximum entropy principle

被引:0
|
作者
El Fattahi, Loubna [1 ]
Lakhdar, Yissam [1 ]
Sbai, El Hassan [2 ]
机构
[1] Moulay Ismail Univ, Fac Sci, Dept Phys, Meknes, Morocco
[2] Moulay Ismail Univ, Higher Sch Technol, Meknes, Morocco
关键词
clustering; variable kernel density; principal components analysis (PCA); Maximum Entropy Principle (MEP); density peak;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering is one of the most important unsupervised classification strategies in data analysis. In this sense, a new clustering approach proposed a fast search algorithm of cluster centers based on their local densities has taken place. In the present paper, we suggest a new performed approach that combine the estimation of the local density and the use of the entropy. So the clustering algorithm is able to give automatically result without any iteration to optimize a cost function as the most popular clustering algorithm do, or either the user-interactive selection of the cluster centroids.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] ENTROPY ESTIMATION USING THE PRINCIPLE OF MAXIMUM ENTROPY
    Behmardi, Behrouz
    Raich, Raviv
    Hero, Alfred O., III
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2008 - 2011
  • [2] An improved algorithm for support vector clustering based on maximum entropy principle and kernel matrix
    Guo, Chonghui
    Li, Fang
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (07) : 8138 - 8143
  • [3] A clustering algorithm based on maximum entropy principle
    Zhao, Yang
    Liu, Fangai
    [J]. 2ND ANNUAL INTERNATIONAL CONFERENCE ON INFORMATION SYSTEM AND ARTIFICIAL INTELLIGENCE (ISAI2017), 2017, 887
  • [4] A Clustering Method Based on the Maximum Entropy Principle
    Aldana-Bobadilla, Edwin
    Kuri-Morales, Angel
    [J]. ENTROPY, 2015, 17 (01) : 151 - 180
  • [5] Clustering based on kernel density estimation: nearest local maximum searching algorithm
    Wang, WJ
    Tan, YX
    Jiang, JH
    Lu, JZ
    Shen, GL
    Yu, RQ
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2004, 72 (01) : 1 - 8
  • [6] Density-sensitive fuzzy kernel maximum entropy clustering algorithm
    Li, Ye-Tong
    Guo, Jie
    Qi, Lin
    Liu, Xuan
    Ruan, Peng-Yu
    Tao, Xin-Min
    [J]. Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2022, 39 (01): : 67 - 82
  • [7] Density-sensitive fuzzy kernel maximum entropy clustering algorithm
    Tao, Xinmin
    Wang, Ruotong
    Chang, Rui
    Li, Chenxi
    [J]. KNOWLEDGE-BASED SYSTEMS, 2019, 166 : 42 - 57
  • [8] Stream Clustering Based on Kernel Density Estimation
    Lodi, Stefano
    Moro, Gianluca
    Sartori, Claudio
    [J]. ECAI 2006, PROCEEDINGS, 2006, 141 : 799 - +
  • [9] Weighted Kernel Deterministic Annealing: A Maximum-Entropy Principle Approach for Shape Clustering
    Baranwal, Mayank
    Salapaka, Srinivasa M.
    [J]. 2018 INDIAN CONTROL CONFERENCE (ICC), 2018, : 1 - 6
  • [10] Image identification and estimation using the maximum entropy principle
    Bouzouba, K
    Radouane, L
    [J]. PATTERN RECOGNITION LETTERS, 2000, 21 (08) : 691 - 700