Validation and Uncertainty Quantification of a Multiphase Computational Fluid Dynamics Model

被引:20
|
作者
Gel, Aytekin [1 ,2 ]
Li, Tingwen [1 ,3 ]
Gopalan, Balaji [1 ]
Shahnam, Mehrdad [1 ]
Syamlal, Madhava [1 ]
机构
[1] Natl Energy Technol Lab, Morgantown, WV 26505 USA
[2] ALPEMI Consulting LLC, Phoenix, AZ 85044 USA
[3] URS Corp, Morgantown, WV 26505 USA
关键词
VERIFICATION; JACKKNIFE; BOOTSTRAP; ERROR; FLOW; CFD; BED;
D O I
10.1021/ie303469f
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
We describe the application of a validation and uncertainty quantification methodology to multiphase computational fluid dynamics modeling, demonstrating the methodology with simulations of a pilot-scale circulating fluidized bed. The overall pressure drop is used as the quantity of interest (QoI); the solids circulation rate and the superficial gas velocity are chosen as the uncertain input quantities. The uncertainty in the QoI, caused by uncertainties in input parameters, surrogate model, spatial discretization, and time averaging, is calculated, and the model form uncertainty is estimated by comparing simulation results with experimental data. The spatial discretization error was determined to be the most dominant source of uncertainty, but the applicability of the method used to calculate that uncertainty needs to be further investigated. The results of the analysis are expressed as a probability box (p-box) plot. A p-box similarly constructed for predictive simulations will give the design engineer information about the confidence in the predicted values.
引用
收藏
页码:11424 / 11435
页数:12
相关论文
共 50 条
  • [1] Applying uncertainty quantification to multiphase flow computational fluid dynamics
    Gel, A.
    Garg, R.
    Tong, C.
    Shahnam, M.
    Guenther, C.
    [J]. POWDER TECHNOLOGY, 2013, 242 : 27 - 39
  • [2] Quantification of uncertainty in computational fluid dynamics
    Roache, PJ
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 1997, 29 : 123 - 160
  • [3] Uncertainty quantification in computational structural dynamics: A new paradigm for model validation
    Alvin, KF
    Oberkampf, WL
    Diegert, KV
    Rutherford, BM
    [J]. IMAC - PROCEEDINGS OF THE 16TH INTERNATIONAL MODAL ANALYSIS CONFERENCE, VOLS 1 AND 2, 1998, 3243 : 1191 - 1198
  • [4] Uncertainty quantification for chaotic computational fluid dynamics
    Yu, Y.
    Zhao, M.
    Lee, T.
    Pestieau, N.
    Bo, W.
    Glimm, J.
    Grove, J. W.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 217 (01) : 200 - 216
  • [5] Uncertainty Quantification for Multiphase Computational Fluid Dynamics Closure Relations with a Physics-Informed Bayesian Approach
    Liu, Yang
    Dinh, Nam
    Sun, Xiaodong
    Hu, Rui
    [J]. NUCLEAR TECHNOLOGY, 2023, 209 (12) : 2002 - 2015
  • [6] Quantification of numerical uncertainty in computational fluid dynamics modelling of hydrocyclones
    Karimi, M.
    Akdogan, G.
    Dellimore, K. H.
    Bradshaw, S. M.
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 2012, 43 : 45 - 54
  • [7] Special Issue: Uncertainty Quantification Computational Fluid Dynamics Preface
    Zang, Thomas A.
    Poroseva, Svetlana
    [J]. THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2012, 26 (05) : 401 - 401
  • [8] Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics
    Najm, Habib N.
    [J]. ANNUAL REVIEW OF FLUID MECHANICS, 2009, 41 : 35 - 52
  • [9] The History of Multiphase Computational Fluid Dynamics
    Lyczkowski, Robert W.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (11) : 5029 - 5036
  • [10] Methods for multiphase computational fluid dynamics
    van Wachem, BGM
    Almstedt, AE
    [J]. CHEMICAL ENGINEERING JOURNAL, 2003, 96 (1-3) : 81 - 98