Use of Genotypes of Common Variants for Genome-Wide Regional Association Analysis

被引:0
|
作者
Kirichenko, A. V. [1 ]
Zorkoltseva, I. V. [1 ]
Belonogova, N. M. [1 ]
Axenovich, T. I. [1 ,2 ]
机构
[1] Russian Acad Sci, Siberian Branch, Fed Res Ctr Inst Cytol & Genet, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Dept Cytol & Genet, Novosibirsk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
regional association analysis; quantitative traits; type I error; inflation factor; simulation; common genetic variants; single nucleotide polymorphic markers; MISSING HERITABILITY; RARE VARIANTS; HUMAN HEIGHT; DISEASES; POPULATION; STRATEGIES; TRAITS; LOCI; GWAS; SET;
D O I
10.1134/S1022795418010076
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Regional association analysis is a new statistical method which simultaneously considers all variants in a selected genome region. This method was created for the analysis of rare genetic variants, whose genotypes are determined by exome or genome sequencing. The gene is usually considered as a region. It was also proposed to use a regional analysis for testing of the association between a complex trait and a set of common variants genotyped by the panels developed for genome-wide association analysis. In this case, overlapping genome regions (sliding windows) are usually considered as a region. Since the size of such regions can be rather large, there is a risk of overestimation (inflation) of the test statistic and an increase in the type I error. In this work, the effect of the size of the region on the type I error was studied for traits with different heritability. The results of simulating experiments demonstrated that the physical size of the region but not the number of genetic variants in it is a limiting factor. The higher the trait heritability, the greater the type I error differs from the declared value. The analysis of a large number of real traits confirmed these conclusions. It is necessary to take into account these results during the interpretation of the results of regional association analysis conducted on large regions using common genetic variants.
引用
收藏
页码:250 / 258
页数:9
相关论文
共 50 条
  • [1] Use of Genotypes of Common Variants for Genome-Wide Regional Association Analysis
    A. V. Kirichenko
    I. V. Zorkoltseva
    N. M. Belonogova
    T. I. Axenovich
    Russian Journal of Genetics, 2018, 54 : 250 - 258
  • [2] Genome-wide association analysis of common genetic variants of resistant hypertension
    El Rouby, Nihal
    McDonough, Caitrin W.
    Gong, Yan
    McClure, Leslie A.
    Mitchell, Braxton D.
    Horenstein, Richard B.
    Talbert, Robert L.
    Crawford, Dana C.
    Gitzendanner, Matthew A.
    Takahashi, Atsushi
    Tanaka, Toshihiro
    Kubo, Michiaki
    Pepine, Carl J.
    Cooper-DeHoff, Rhonda M.
    Benavente, Oscar R.
    Shuldiner, Alan R.
    Johnson, Julie A.
    PHARMACOGENOMICS JOURNAL, 2019, 19 (03): : 295 - 304
  • [3] Genome-wide association analysis of common genetic variants of resistant hypertension
    Nihal El Rouby
    Caitrin W. McDonough
    Yan Gong
    Leslie A. McClure
    Braxton D. Mitchell
    Richard B. Horenstein
    Robert L. Talbert
    Dana C. Crawford
    Matthew A. Gitzendanner
    Atsushi Takahashi
    Toshihiro Tanaka
    Michiaki Kubo
    Carl J. Pepine
    Rhonda M. Cooper-DeHoff
    Oscar R. Benavente
    Alan R. Shuldiner
    Julie A. Johnson
    The Pharmacogenomics Journal, 2019, 19 : 295 - 304
  • [4] Genome-wide association analysis identifies common variants influencing infant brain volumes
    Xia, K.
    Zhang, J.
    Ahn, M.
    Jha, S.
    Crowley, J. J.
    Szatkiewicz, J.
    Li, T.
    Zou, F.
    Zhu, H.
    Hibar, D.
    Thompson, P.
    Sullivan, P. F.
    Styner, M.
    Gilmore, J. H.
    Knickmeyer, R. C.
    TRANSLATIONAL PSYCHIATRY, 2017, 7 : e1188 - e1188
  • [5] Genome-wide association analysis identifies common variants influencing infant brain volumes
    K Xia
    J Zhang
    M Ahn
    S Jha
    J J Crowley
    J Szatkiewicz
    T Li
    F Zou
    H Zhu
    D Hibar
    P Thompson
    P F Sullivan
    M Styner
    J H Gilmore
    R C Knickmeyer
    Translational Psychiatry, 2017, 7 : e1188 - e1188
  • [6] Association of common genetic variants with brain microbleeds A genome-wide association study
    Knol, Maria J.
    Lu, Dongwei
    Traylor, Matthew
    Adams, Hieab H. H.
    Romero, Jose Rafael J.
    Smith, Albert, V
    Fornage, Myriam
    Hofer, Edith
    Liu, Junfeng
    Hostettler, Isabel C.
    Luciano, Michelle
    Trompet, Stella
    Giese, Anne-Katrin
    Hilal, Saima
    van den Akker, Erik B.
    Vojinovic, Dina
    Li, Shuo
    Sigurdsson, Sigurdur
    van der Lee, Sven J.
    Jack, Clifford R., Jr.
    Wilson, Duncan
    Yilmaz, Pinar
    Satizabal, Claudia L.
    Liewald, David C. M.
    van der Grond, Jeroen
    Chen, Christopher
    Saba, Yasaman
    van der Lugt, Aad
    Bastin, Mark E.
    Windham, B. Gwen
    Cheng, Ching Yu
    Pirpamer, Lukas
    Kantarci, Kejal
    Himali, Jayandra J.
    Yang, Qiong
    Morris, Zoe
    Beiser, Alexa S.
    Tozer, Daniel J.
    Vernooij, Meike W.
    Amin, Najaf
    Beekman, Marian
    Koh, Jia Yu
    Stott, David J.
    Houlden, Henry
    Schmidt, Reinhold
    Gottesman, Rebecca F.
    MacKinnon, Andrew D.
    DeCarli, Charles
    Gudnason, Vilmundur
    Deary, Ian J.
    NEUROLOGY, 2020, 95 (24) : E3331 - E3343
  • [7] Population Structure and Genome-Wide Association Analysis of Bruchid Resistance in Ethiopian Common Bean Genotypes
    Tigist, Shiferaw G.
    Melis, Rob
    Sibiya, Julia
    Amelework, Assefa B.
    Keneni, Gemechu
    Tegene, Asheber
    CROP SCIENCE, 2019, 59 (04) : 1504 - 1515
  • [8] Genome-Wide Association Analysis of Imputed Rare Variants: Application to Seven Common Complex Diseases
    Maegi, Reedik
    Asimit, Jennifer L.
    Day-Williams, Aaron G.
    Zeggini, Eleftheria
    Morris, Andrew P.
    GENETIC EPIDEMIOLOGY, 2012, 36 (08) : 785 - 796
  • [9] Conditional genome-wide association analysis identifies genetic variants
    Byrne, E.
    BIPOLAR DISORDERS, 2019, 21 : 40 - 40
  • [10] Common variants for atrial fibrillation: results from genome-wide association studies
    Liu, Xinyuan
    Wang, Fei
    Knight, Ashley C.
    Zhao, Jiangmin
    Xiao, Junjie
    HUMAN GENETICS, 2012, 131 (01) : 33 - 39