Elevation, azimuth, and polarization estimation with nested electromagnetic vector-sensor arrays via tensor modeling

被引:0
|
作者
Cao, Ming-Yang [1 ,2 ]
Mao, Xingpeng [1 ,2 ]
Huang, Lei [3 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Xidazhi St, Harbin 150001, Peoples R China
[2] Minist Ind & Informat Technol, Key Lab Marine Environm Monitoring & Informat Pro, Xidazhi St, Harbin 150001, Peoples R China
[3] Shenzhen Univ, Coll Informat Engn, Nanhai Rd, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Electromagnetic vector-sensor; Nested array; Parameter estimation; Tensor decomposition; Cramer-Rao bound (CRB); ESPRIT; PERFORMANCE; MUSIC; DECOMPOSITION; SEPARATION; DOA;
D O I
10.1186/s13638-020-01764-8
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we address the joint estimation problem of elevation, azimuth, and polarization with nested array consists of complete six-component electromagnetic vector-sensors (EMVS). Taking advantage of the tensor permutation, we convert the sample covariance matrix of the receive data into a tensorial form which provides enhanced degree-of-freedom. Moreover, the parameter estimation issue with the proposed model boils down to a Vandermonde constraint Canonical Polyadic Decomposition problem. The structured least squares estimation of signal parameters via rotational invariance techniques is tailored for joint auto-pairing elevation, azimuth, and polarization estimation, ending up with a computational efficient method that avoids exhaustive searching over spatial and polarization region. Furthermore, the sufficient uniqueness analysis of our proposed approach is addressed, and the stochastic Cramer-Rao bound for underdetermined parameter estimation is derived. Simulation results are given to verify the effectiveness of the proposed method.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Elevation, azimuth, and polarization estimation with nested electromagnetic vector-sensor arrays via tensor modeling
    Ming-Yang Cao
    Xingpeng Mao
    Lei Huang
    [J]. EURASIP Journal on Wireless Communications and Networking, 2020
  • [2] Direction of Arrival Estimation Using Nested Vector-Sensor Arrays Via Tensor Modeling
    Han, Keyong
    Nehorai, Arye
    [J]. 2014 IEEE 8TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2014, : 429 - 432
  • [3] Nested Vector-Sensor Array Processing via Tensor Modeling
    Han, Keyong
    Nehorai, Arye
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (10) : 2542 - 2553
  • [4] Tensor Approach to DOA Estimation of Coherent Signals with Electromagnetic Vector-Sensor Array
    Cao, Ming-Yang
    Mao, Xingpeng
    Long, Xiaozhuan
    Huang, Lei
    [J]. SENSORS, 2018, 18 (12)
  • [5] Augmented Tensor MUSIC for DOA Estimation Using Nested Acoustic Vector-Sensor Array
    Qu, Xinghao
    Lou, Yi
    Zhao, Yunjiang
    Lu, Yinheng
    Qiao, Gang
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 1624 - 1628
  • [6] Direction-of-Arrival Estimation for Nested Acoustic Vector-Sensor Arrays Using Quaternions
    Lou, Yi
    Qu, Xinghao
    Wang, Dawei
    Cheng, Julian
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [7] Bearing estimation with acoustic vector-sensor arrays
    Hawkes, M
    Nehorai, A
    [J]. ACOUSTIC PARTICLE VELOCITY SENSORS: DESIGN, PERFORMANCE, AND APPLICATIONS, 1996, (368): : 345 - 358
  • [8] Uni-vector-sensor ESPRIT for multisource azimuth, elevation, and polarization estimation
    Wong, KT
    Zoltowski, MD
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1997, 45 (10) : 1467 - 1474
  • [9] Weighted polarization smoothing algorithm for electromagnetic vector-sensor array
    Zheng, Gui-Mei
    Chen, Bai-Xiao
    Yang, Ming-Lei
    Chen, Gen-Hua
    [J]. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2012, 34 (04): : 637 - 643
  • [10] Polarization-Angle-Frequency Estimation Using Nested Vector Sensor Arrays
    Han, Xiaodong
    Shu, Ting
    Zhang, Zenghui
    He, Jin
    Yu, Wenxian
    [J]. 2018 INTERNATIONAL CONFERENCE ON RADAR (RADAR), 2018,