Progress in lead-free piezoelectric nanofiller materials and related composite nanogenerator devices

被引:67
|
作者
Zhang, Yong [1 ,2 ]
Kim, Hyunseung [3 ]
Wang, Qing [4 ]
Jo, Wook [5 ]
Kingon, Angus, I [6 ]
Kim, Seung-Hyun [6 ]
Jeong, Chang Kyu [3 ,7 ]
机构
[1] Wuhan Univ Technol, Ctr Smart Mat & Device Integrat, Sch Mat Sci & Engn, State Key Lab Silicate Mat Architectures, Wuhan 430070, Peoples R China
[2] Natl Univ Singapore, Dept Mat Sci & Engn, 9 Engn Dr 1, Singapore 117575, Singapore
[3] Jeonbuk Natl Univ, Hydrogen & Fuel Cell Res Ctr, Dept Energy Storage Convers Engn, Jeonju 54896, Jeonbuk, South Korea
[4] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[5] Ulsan Natl Inst Sci & Technol UNIST, Sch Mat Sci & Engn, Julich UNIST Joint Leading Inst Adv Energy Res JU, Ulsan 44919, South Korea
[6] Brown Univ, Sch Engn, Providence, RI 02912 USA
[7] Jeonbuk Natl Univ, Div Adv Mat Engn, Jeonju 54896, Jeonbuk, South Korea
来源
NANOSCALE ADVANCES | 2020年 / 2卷 / 08期
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
SUPERCRITICAL-FLUID TECHNOLOGY; POWERED ACOUSTIC SENSOR; BARIUM-TITANATE; HYDROTHERMAL SYNTHESIS; ELECTRICAL-PROPERTIES; FREE PIEZOCERAMICS; ENERGY-STORAGE; THIN-FILMS; LARGE-AREA; 0.5BA(ZR0.2TI0.8)O-3-0.5(BA0.7CA0.3)TIO3 NANOWIRES;
D O I
10.1039/c9na00809h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Current piezoelectric device systems need a significant reduction in size and weight so that electronic modules of increasing capacity and functionality can be incorporated into a great range of applications, particularly in energy device platforms. The key question for most applications is whether they can compete in the race of down-scaling and an easy integration with highly adaptable properties into various system technologies such as nano-electro-mechanical systems (NEMS). Piezoelectric NEMS have potential to offer access to a parameter space for sensing, actuating, and powering, which is inflential and intriguing. Fortunately, recent advances in modelling, synthesis, and characterization techniques are spurring unprecedented developments in a new field of piezoelectric nano-materials and devices. While the need for looking more closely at the piezoelectric nano-materials is driven by the relentless drive of miniaturization, there is an additional motivation: the piezoelectric materials, which are showing the largest electromechanical responses, are currently toxic lead (Pb)-based perovskite materials (such as the ubiquitous Pb(Zr,Ti)O-3, PZT). This is important, as there is strong legislative and moral push to remove toxic lead compounds from commercial products. By far, the lack of viable alternatives has led to continuing exemptions to allow their temporary use in piezoelectric applications. However, the present
引用
收藏
页码:3131 / 3149
页数:19
相关论文
共 50 条
  • [1] An overview of lead-free piezoelectric materials and devices
    Wei, Huige
    Wang, Hui
    Xia, Yijie
    Cui, Dapeng
    Shi, Yapeng
    Dong, Mengyao
    Liu, Chuntai
    Ding, Tao
    Zhang, Jiaoxia
    Ma, Yong
    Wang, Ning
    Wang, Zicheng
    Sun, Ye
    Wei, Renbo
    Guo, Zhanhu
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (46) : 12446 - 12467
  • [2] Flexible lead-free piezoelectric polymer composite nanogenerator with enhanced crystallinity
    Bouhamed, Ayda
    Qin Binyu
    Kanoun, Olfa
    [J]. PROCEEDINGS OF THE 2020 17TH INTERNATIONAL MULTI-CONFERENCE ON SYSTEMS, SIGNALS & DEVICES (SSD 2020), 2020, : 130 - 134
  • [3] Progress of Lead-free Perovskite Photovoltaic Materials and Devices
    Zhao X.-F.
    Zhu Y.-F.
    Meng F.-B.
    Ma X.-H.
    Song H.-W.
    Chen C.
    [J]. Faguang Xuebao/Chinese Journal of Luminescence, 2022, 43 (06): : 817 - 832
  • [4] A flexible piezoelectric composite nanogenerator based on doping enhanced lead-free nanoparticles
    Vivekananthan, Venkateswaran
    Chandrasekhara, Arunkumar
    Alluri, Nagamalleswara Rao
    Purusothaman, Yuvasree
    Kim, Woo Joong
    Kang, Chang-Nam
    Kim, Sang-Jae
    [J]. MATERIALS LETTERS, 2019, 249 : 73 - 76
  • [5] Lead-free piezoelectric nanogenerator using lightweight composite films for harnessing biomechanical energy
    Raj, Nirmal Prashanth Maria Joseph
    Alluri, Nagamalleswara Rao
    Khandelwal, Gaurav
    Kim, Sang-Jae
    [J]. COMPOSITES PART B-ENGINEERING, 2019, 161 : 608 - 616
  • [6] Applications of lead-free piezoelectric materials
    Kenji Shibata
    Ruiping Wang
    Tonshaku Tou
    Jurij Koruza
    [J]. MRS Bulletin, 2018, 43 : 612 - 616
  • [7] Applications of lead-free piezoelectric materials
    Shibata, Kenji
    Wang, Ruiping
    Tou, Tonshaku
    Koruza, Jurij
    [J]. MRS BULLETIN, 2018, 43 (08) : 612 - 616
  • [8] Flexible Lead-Free Piezoelectric Composite Materials for Energy Harvesting Applications
    Stuber, Vincent L.
    Deutz, Daniella B.
    Bennett, James
    Cannel, David
    de Leeuw, Dago M.
    van der Zwaag, Sybrand
    Groen, Pim
    [J]. ENERGY TECHNOLOGY, 2019, 7 (01) : 177 - 185
  • [9] Research progress of lead-free piezoelectric ceramics
    Pu, Yong-Ping
    Yao, Mou-Teng
    Gao, Zi-Yan
    Jin, Qian
    Zheng, Han-Yu
    Wang, Ya-Ru
    [J]. Rengong Jingti Xuebao/Journal of Synthetic Crystals, 2015, 44 (08): : 2034 - 2045
  • [10] Lead-Free Halide Perovskite Materials and Optoelectronic Devices: Progress and Prospective
    Lopez-Fernandez, Iago
    Valli, Donato
    Wang, Chun-Yun
    Samanta, Subarna
    Okamoto, Takuya
    Huang, Yi-Teng
    Sun, Kun
    Liu, Yang
    Chirvony, Vladimir S.
    Patra, Avijit
    Zito, Juliette
    De Trizio, Luca
    Gaur, Deepika
    Sun, Hong-Tao
    Xia, Zhiguo
    Li, Xiaoming
    Zeng, Haibo
    Mora-Sero, Ivan
    Pradhan, Narayan
    Martinez-Pastor, Juan P.
    Mueller-Buschbaum, Peter
    Biju, Vasudevanpillai
    Debnath, Tushar
    Saliba, Michael
    Debroye, Elke
    Hoye, Robert L. Z.
    Infante, Ivan
    Manna, Liberato
    Polavarapu, Lakshminarayana
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (06)