On Destination Prediction Based on Markov Bridging Distributions

被引:10
|
作者
Liang, Jiaming [1 ]
Ahmad, Bashar, I [1 ]
Gan, Runze [1 ]
Langdon, Pat [1 ]
Hardy, Robert [2 ]
Godsill, Simon [1 ]
机构
[1] Univ Cambridge, Engn Dept, Cambridge CB2 1PZ, England
[2] Jaguar Land Rover, Coventry CV3 4LF, W Midlands, England
关键词
Intent inference; tracking; Kalman filter; INTENT PREDICTION;
D O I
10.1109/LSP.2019.2943081
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter presents an alternative, more consistent, construction for bridging distributions, which enables inferring the destination of a tracked object from the available partial sensory observations. Two algorithms are then introduced to sequentially estimate the probability of all possible endpoints within a generic Bayesian framework. They capture the influence of intended destination on the object's motion via suitably adapted stochastic models. Whilst the bridging approach has low training requirements, the proposed formulation can lead to more efficient predictors, e.g. around 65% less computations for certain models. Synthetic and real data is used to illustrate the effectiveness of the introduced algorithms.
引用
收藏
页码:1663 / 1667
页数:5
相关论文
共 50 条
  • [1] DESTINATION INFERENCE USING BRIDGING DISTRIBUTIONS
    Ahmad, Bashar I.
    Murphy, James
    Langdon, Patrick M.
    Hardy, Robert
    Godsill, Simon J.
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 5585 - 5589
  • [2] A Hidden Markov Model for Route and Destination Prediction
    Lassoued, Yassine
    Monteil, Julien
    Gu, Yingqi
    Russo, Giovanni
    Shorten, Robert
    Mevissen, Martin
    2017 IEEE 20TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2017,
  • [3] Trip destination prediction based on past GPS log using a Hidden Markov Model
    Alvarez-Garcia, J. A.
    Ortega, J. A.
    Gonzalez-Abril, L.
    Velasco-Morente, Francisco
    EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (12) : 8166 - 8171
  • [4] Combining Markov model and Prediction by Partial Matching compression technique for route and destination prediction
    Nobre Neto, Francisco Dantas
    Baptista, Claudio de Souza
    Campelo, Claudio E. C.
    KNOWLEDGE-BASED SYSTEMS, 2018, 154 : 81 - 92
  • [5] Travel Destination Prediction Based on Origin-Destination Data
    Liu, Shudong
    Zhang, Liaoyuan
    Chen, Xu
    COMPLEX, INTELLIGENT AND SOFTWARE INTENSIVE SYSTEMS, 2021, 1194 : 315 - 325
  • [6] Mixture of Distributions Based on the Markov Chain
    Ya. I. Yeleyko
    O. A. Yarova
    Cybernetics and Systems Analysis, 2022, 58 : 754 - 757
  • [7] Bayesian Intent Prediction in Object Tracking Using Bridging Distributions
    Ahmad, Bashar I.
    Murphy, James K.
    Langdon, Patrick M.
    Godsill, Simon J.
    IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (01) : 215 - 227
  • [8] Destination-Directed Trajectory Modeling and Prediction Using Conditionally Markov Sequences
    Rezaie, Reza
    Li, X. Rong
    2018 IEEE WESTERN NEW YORK IMAGE AND SIGNAL PROCESSING WORKSHOP (WNYISPW), 2018,
  • [9] EFFICIENT BRIDGING-BASED DESTINATION INFERENCE IN OBJECT TRACKING
    Ardeshiri, Tohid
    Ahmad, Bashar I.
    Langdon, Patrick M.
    Godsill, Simon J.
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 4406 - 4410
  • [10] Estimation of Origin-Destination Matrices Based on Markov Chains
    Tesselkin, Alexandr
    Khabarov, Valeriy
    PROCEEDINGS OF THE 16TH INTERNATIONAL SCIENTIFIC CONFERENCE RELIABILITY AND STATISTICS IN TRANSPORTATION AND COMMUNICATION (RELSTAT-2016), 2017, 178 : 107 - 116