Automatic Exudate Detection with Improved Naive-Bayes Classifier

被引:0
|
作者
Harangi, Balazs [1 ]
Antal, Balint [1 ]
Hajdu, Andras [1 ]
机构
[1] Univ Debrecen, Fac Informat, Debrecen, Hungary
关键词
DIABETIC-RETINOPATHY; RETINAL IMAGES;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Nowadays diabetic retinopathy Is one of the most common reasons of blindness in the world. Exudates are the primary sign of this disease so the proper detection of these lesions is an essential task in an automatic screening,system. In this paper, we propose a method for exudate detection which performs with high accuracy. First, we identify possible regions containing exudates using grayscale morphology. Then, we extract more than 50 descriptors for each candidate pixel to classify them. We analyzed the information content of the descriptors and selected the most relevant ones. The selected features are used to train a boosted naive Bayes classifier. We tested this approach on the publicly available DiaretDB color fundus image database, where the proposed detector outperformed the state-of-the-art ones regarding the F-Score.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] A Naive-Bayes classifier for damage detection in engineering materials
    Addin, O.
    Sapuan, S. M.
    Mahdi, E.
    Othman, A.
    [J]. MATERIALS & DESIGN, 2007, 28 (08) : 2379 - 2386
  • [2] Incremental discretization for Naive-Bayes classifier
    Lu, Jingli
    Yang, Ying
    Webb, Geoffrey I.
    [J]. ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2006, 4093 : 223 - 238
  • [3] Robust approach for estimating probabilities in naive-Bayes classifier
    Chandra, B.
    Gupta, Manish
    Gupta, M. P.
    [J]. PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PROCEEDINGS, 2007, 4815 : 11 - +
  • [4] Multidamage Detection of Bridges Using Rough Set Theory and Naive-Bayes Classifier
    Sun, Shuang
    Liang, Li
    Li, Ming
    Li, Xin
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018
  • [5] Sentiment analysis by using Naive-Bayes classifier with stacked CARU
    Chan, Ka-Hou
    Im, Sio-Kei
    [J]. ELECTRONICS LETTERS, 2022, 58 (10) : 411 - 413
  • [6] Predicting project delivery rates using the Naive-Bayes classifier
    Stewart, B
    [J]. JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION-RESEARCH AND PRACTICE, 2002, 14 (03): : 161 - 179
  • [7] Robust approach for estimating probabilities in Naive-Bayes Classifier for gene expression data
    Chandra, B.
    Gupta, Manish
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (03) : 1293 - 1298
  • [8] 改进的Naive-Bayes方法
    张晓引
    岳丽华
    [J]. 中国科学技术大学学报, 1999, (01) : 104 - 110
  • [9] RoughTree: A classifier with Naive-Bayes and rough sets hybrid in decision tree representation
    Ji, Yangsheng
    Shang, Lin
    [J]. GRC: 2007 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, PROCEEDINGS, 2007, : 221 - 226
  • [10] The Naive-Bayes Decision Tree (NBTree) Classifier - edicting the Probability of Survival in Breast Cancer
    Al-Allak, A.
    Leonard, R.
    Lewis, P. D.
    [J]. CANCER RESEARCH, 2010, 70