Optimality and Duality for Weak Quasi Efficiency of Multiobjective Fractional Problems via Convexificators

被引:0
|
作者
van Luu, Do [1 ,2 ]
Linh, Pham Thi [3 ]
机构
[1] Thang Long Univ, TIMAS, Hanoi, Vietnam
[2] Vietnam Acad Sci & Technol, Inst Math, Hanoi, Vietnam
[3] Thai Nguyen Univ Econ, Business Adm, Thai Nguyen, Vietnam
来源
MINIMAX THEORY AND ITS APPLICATIONS | 2022年 / 7卷 / 01期
关键词
Multiobjiective fractional problem; local weak quasi-efficient solution; Fritz John and Kuhn-Tucker efficiency conditions; SUFFICIENT CONDITIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fritz John and Kuhn-Tucker necessary conditions for weak quasi-efficiency of multiobjective frac-tional optimization problems with equality, inequality and set constraints are derived. Under asumptions on asymptotic pseudoinvexity of the objective and asymptotic quasiinvexity of con-straint functions, sufficient conditions for weak quasi-efficiency are also given together with duality theorems of Wolfe and Mond-Weir types.
引用
收藏
页码:57 / 78
页数:22
相关论文
共 50 条
  • [1] Optimality and duality for nonsmooth multiobjective fractional problems using convexificators
    Luu, Do V.A.N.
    Linh, Pham T.H.I.
    [J]. Journal of Nonlinear Functional Analysis, 2021, 2021 (01):
  • [2] OPTIMALITY AND DUALITY FOR NONSMOOTH MULTIOBJECTIVE FRACTIONAL PROBLEMS USING CONVEXIFICATORS
    Do Van Luu
    Pham Thi Linh
    [J]. JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2021,
  • [3] OPTIMALITY AND DUALITY FOR NONSMOOTH SEMIDEFINITE MULTIOBJECTIVE FRACTIONAL PROGRAMMING PROBLEMS USING CONVEXIFICATORS
    Upadhyay, B.B.
    Singh, Shubham Kumar
    [J]. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2023, 85 (04): : 79 - 90
  • [4] OPTIMALITY CONDITIONS FOR MULTIOBJECTIVE FRACTIONAL PROGRAMMING, VIA CONVEXIFICATORS
    Hejazi, Mansoureh Alavi
    Nobakhtian, Soghra
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2020, 16 (02) : 623 - 631
  • [5] OPTIMALITY AND DUALITY FOR SEMIDEFINITE MULTIOBJECTIVE PROGRAMMING PROBLEMS USING CONVEXIFICATORS
    Mishra, Shashi Kant
    Kumar, Rahul
    Laha, Vivek
    Maurya, Jitendra Kumar
    [J]. Journal of Applied and Numerical Optimization, 2022, 4 (01): : 103 - 108
  • [6] Convexificators for nonconvex multiobjective optimization problems with uncertain data: robust optimality and duality
    Chen, J. W.
    Yang, R.
    Kobis, E.
    Ou, X.
    [J]. OPTIMIZATION, 2023,
  • [7] On optimality and duality for nonsmooth multiobjective fractional optimization problems
    Kim, Gwi Soo
    Kim, Moon Hee
    Lee, Gue Myung
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) : E1867 - E1876
  • [8] Pseudoinvexity, optimality conditions and efficiency in multiobjective problems; duality
    Arana-Jimenez, A.
    Rufian-Lizana, A.
    Osuna-Gomez, R.
    Ruiz-Garzon, G.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (01) : 24 - 34
  • [9] Optimality and duality for a class of nondifferentiable multiobjective fractional programming problems
    Kim, D. S.
    Kim, S. J.
    Kim, M. H.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2006, 129 (01) : 131 - 146
  • [10] Optimality and duality for multiobjective fractional problems with r-invexity
    Lee, Jin-Chirng
    Ho, Shun-Chin
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (03): : 719 - 740