Electrochemical micromachining of passive electrodes

被引:19
|
作者
Sueptitz, R. [1 ]
Dunne, P. [1 ]
Tschulik, K. [1 ]
Uhlemann, M. [1 ]
Eckert, J. [1 ]
Gebert, A. [1 ]
机构
[1] Leibniz Inst Solid State & Mat Res IFW Dresden, D-01069 Dresden, Germany
关键词
Electrochemical micromachining; Numerical simulation; Passive electrode; Stainless steel; ULTRASHORT VOLTAGE PULSES; TRANSPASSIVE DISSOLUTION MECHANISM; BULK METALLIC-GLASS; STAINLESS-STEELS; SEMICONDUCTING PROPERTIES; SULFURIC-ACID; SURFACES; ALLOYS; FILMS;
D O I
10.1016/j.electacta.2013.07.139
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The electronic model describing the electrochemical micromachining (ECMM) of passive electrodes utilizing the transpassive dissolution is discussed. Numerical simulations are performed on a machining model circuit using measured electrochemical properties of the model system which consisted of a tungsten tool electrode, a 1 M H2SO4 electrolyte and a stainless steel work piece electrode. The results of these simulations were verified by performing machining experiments applying the same model system. For a passive stainless steel electrode it is shown that it can be treated like an actively dissolving electrode with high reaction overpotential. The efficiency of the machining process can be enhanced by polarizing the steel work piece electrode close to the transpassive potential region. Three different ways of achieving this polarization are discussed: by polarizing the work piece electrode only, by polarizing both electrodes and by adding oxidizing species to the electrolyte solution. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:562 / 569
页数:8
相关论文
共 50 条
  • [1] Electrochemical micromachining of passive electrodes - Application to bulk metallic glasses
    Sueptitz, R.
    Horn, S.
    Stoica, M.
    Uhlemann, M.
    Gebert, A.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2015, 219 : 193 - 198
  • [2] In Situ Fabrication of Ribbed Wire Electrodes for Wire Electrochemical Micromachining
    Zou Xianghe
    Fang Xiaolong
    Zeng Yongbin
    Zhang Pengfei
    Zhu Di
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2016, 11 (03): : 2335 - 2344
  • [3] Computational analysis of intratool interactions in electrochemical micromachining with multitip tool electrodes
    Kenney, Jason A.
    Hwang, Gyeong S.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (09) : D21 - D23
  • [4] Atmospheric dual laser deposited dielectric coating on electrodes for electrochemical micromachining
    Chang, Yuan-Jen
    Ho, Chao-Ching
    Hsu, Jin-Chen
    Hwang, Tseng-Yao
    Kuo, Chia-Lung
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2015, 226 : 205 - 213
  • [5] MICROMACHINING WITH VIRTUAL ELECTRODES
    UHLIR, A
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1955, 26 (10): : 965 - 968
  • [6] MICROMACHINING WITH VIRTUAL ELECTRODES
    UHLIR, A
    PHYSICAL REVIEW, 1955, 99 (02): : 615 - 615
  • [7] Electrochemical micromachining
    Schuster, R
    Kirchner, V
    Allongue, P
    Ertl, G
    SCIENCE, 2000, 289 (5476) : 98 - 101
  • [8] Electrochemical micromachining based on multifunction tool for micromachining
    Dept. of Mechanical Eng., Harbin Inst. of Technology, Harbin 150001, China
    不详
    Shanghai Jiaotong Daxue Xuebao, 2006, 6 (909-913):
  • [9] Influence of Tool Electrodes on Machinability of Stainless Steel 420 Using Electrochemical Micromachining Process
    Geethapriyan, T.
    Lakshmanan, Poovazhagan
    Prakash, M.
    Iqbal, U. Mohammed
    Suraj, S.
    ADVANCES IN MANUFACTURING PROCESSES, ICEMMM 2018, 2019, : 441 - 456
  • [10] ELECTROCHEMICAL MICROMACHINING.
    van Osenbruggen, C.
    de Regt, C.
    Philips Technical Review, 1985, 42 (01): : 22 - 32