A Semi-Supervised Method for Drug-Target Interaction Prediction with Consistency in Networks

被引:105
|
作者
Chen, Hailin [1 ,2 ]
Zhang, Zuping [1 ]
机构
[1] Cent S Univ, Sch Informat Sci & Engn, Changsha, Hunan, Peoples R China
[2] Hunan Univ Humanities Sci & Technol, Dept Comp Sci & Technol, Loudi, Peoples R China
来源
PLOS ONE | 2013年 / 8卷 / 05期
基金
高等学校博士学科点专项科研基金; 国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
DIVERSITY-ORIENTED SYNTHESIS; PHARMACOLOGY; INTEGRATION; MODEL;
D O I
10.1371/journal.pone.0062975
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Computational prediction of interactions between drugs and their target proteins is of great importance for drug discovery and design. The difficulties of developing computational methods for the prediction of such potential interactions lie in the rarity of known drug-protein interactions and no experimentally verified negative drug-target interaction sample. Furthermore, target proteins need also to be predicted for some new drugs without any known target interaction information. In this paper, a semi-supervised learning method NetCBP is presented to address this problem by using labeled and unlabeled interaction information. Assuming coherent interactions between the drugs ranked by their relevance to a query drug, and the target proteins ranked by their relevance to the hidden target proteins of the query drug, we formulate a learning framework maximizing the rank coherence with respect to the known drug-target interactions. When applied to four classes of important drug-target interaction networks, our method improves previous methods in terms of cross-validation and some strongly predicted interactions are confirmed by the publicly accessible drug target databases, which indicates the usefulness of our method. Finally, a comprehensive prediction of drug-target interactions enables us to suggest many new potential drug-target interactions for further studies.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Prediction Drug-Target Interaction Networks Based on Semi-Supervised Learning Method
    Gu Quan
    Ding Yongsheng
    Zhang Tongliang
    Han Tao
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 7185 - 7188
  • [2] A Label Extended Semi-supervised Learning Method for Drug-target Interaction Prediction
    Jie Zhao
    Zhi Cao
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON AUTOMATION, MECHANICAL CONTROL AND COMPUTATIONAL ENGINEERING, 2015, 124 : 1635 - 1640
  • [3] Drug-Target Interaction Prediction in Drug Repositioning Based on Deep Semi-Supervised Learning
    Bahi, Meriem
    Batouche, Mohamed
    COMPUTATIONAL INTELLIGENCE AND ITS APPLICATIONS, 2018, 522 : 302 - 313
  • [4] Semi-supervised heterogeneous graph contrastive learning for drug-target interaction prediction
    Yao, Kainan
    Wang, Xiaowen
    Li, Wannian
    Zhu, Hongming
    Jiang, Yizhi
    Li, Yulong
    Tian, Tongxuan
    Yang, Zhaoyi
    Liu, Qi
    Liu, Qin
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 163
  • [5] Semi-Supervised Hybrid Predictive Bi-Clustering Trees for Drug-Target Interaction Prediction
    Ribeiro Alves, Andre Hallwas
    Braga Ilidio Silva, Pedro de Carvalho
    Cerri, Ricardo
    38TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2023, 2023, : 1163 - 1170
  • [6] Multilevel Attention Network with Semi-supervised Domain Adaptation for Drug-Target Prediction
    Xie, Zhousan
    Tu, Shikui
    Xu, Lei
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 1, 2024, : 329 - 337
  • [7] Drug-Target Interaction Prediction in Coronavirus Disease 2019 Case Using Deep Semi-Supervised Learning Model
    Sulistiawan, Faldi
    Kusuma, Wisnu Ananta
    Ramadhanti, Nabila Sekar
    Tedjo, Aryo
    ICACSIS 2020: 2020 12TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE AND INFORMATION SYSTEMS (ICACSIS), 2020, : 83 - 88
  • [8] Binding affinity prediction for binary drug-target interactions using semi-supervised transfer learning
    Tanoori, Betsabeh
    Zolghadri Jahromi, Mansoor
    Mansoori, Eghbal G.
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2021, 35 (08) : 883 - 900
  • [9] Predicting Drug-Target Interactions Based on an Improved Semi-Supervised Learning Approach
    Yu, Weiming
    Cheng, Xuan
    Li, Zhibin
    Jiang, Zhenran
    DRUG DEVELOPMENT RESEARCH, 2011, 72 (02) : 219 - 224
  • [10] Drug-Target Interaction Prediction Based on Heterogeneous Networks
    Wang, Yingjie
    Chang, Huiyou
    Wang, Jihong
    Shi, Yue
    2018 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND BIOINFORMATICS (ICBEB 2018), 2018, : 14 - 18