A combinatorial strongly polynomial algorithm for minimizing submodular functions

被引:333
|
作者
Iwata, S [1 ]
Fleischer, L
Fujishige, S
机构
[1] Univ Tokyo, Dept Math Engn & Informat Phys, Tokyo 1138656, Japan
[2] Carnegie Mellon Univ, Grad Sch Ind Adm, Pittsburgh, PA 15213 USA
[3] Osaka Univ, Grad Sch Engn Sci, Div Syst Sci, Toyonaka, Osaka 5608531, Japan
关键词
algorithms; discrete optimization; strongly polynomial algorithm; submodular function;
D O I
10.1145/502090.502096
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a combinatorial polynomial-time algorithm for minimizing submodular functions, answering an open question posed in 1981 by Grotschel, Lovasz, and Schrijver. The algorithm employs a scaling scheme that uses a flow in the complete directed graph on the underlying set with each arc capacity equal to the scaled parameter. The resulting algorithm runs in time bounded by a polynomial in the size of the underlying set and the length of the largest absolute function value. The paper also presents a strongly polynomial version in which the number of steps is bounded by a polynomial in the size of the underlying set, independent of the function values.
引用
收藏
页码:761 / 777
页数:17
相关论文
共 50 条