Fast evaluation of radial basis functions:: Methods for generalized multiquadrics in Rn

被引:47
|
作者
Cherrie, JB
Beatson, RK
Newsam, GN
机构
[1] Univ Canterbury, Dept Math & Stat, Christchurch 1, New Zealand
[2] Def Sci & Technol Org, Surveillance Syst Div, Salisbury, SA 5108, Australia
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2002年 / 23卷 / 05期
关键词
Fast evaluation; Generalized multiquadric; Radial basis functions;
D O I
10.1137/S1064827500367609
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A generalized multiquadric radial basis function is a function of the form s(x) = Sigma(i=1)(N) d(i)phi(|x-t(i)|), where phi(r) = (r(2)+tau(2))(k/2), x is an element of R-n, and k is an element of Z is odd. The direct evaluation of an N center generalized multiquadric radial basis function at m points requires O (mN) flops, which is prohibitive when m and N are large. Similar considerations apparently rule out fitting an interpolating N center generalized multiquadric to N data points by either direct or iterative solution of the associated system of linear equations in realistic problems. In this paper we will develop far field expansions, recurrence relations for efficient formation of the expansions, error estimates, and translation formulas for generalized multiquadric radial basis functions in n-variables. These pieces are combined in a hierarchical fast evaluator requiring only O((m+N) log N|log epsilon|(n+1)) flops for evaluation of an N center generalized multiquadric at m points. This flop count is significantly less than that of the direct method. Moreover, used to compute matrix-vector products, the fast evaluator provides a basis for fast iterative fitting strategies.
引用
收藏
页码:1549 / 1571
页数:23
相关论文
共 50 条
  • [1] Fast evaluation of radial basis functions: Moment-based methods
    Beatson, RK
    Newsam, GN
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (05): : 1428 - 1449
  • [2] A Fast Solution for the Generalized Radial Basis Functions Interpolant
    Zhong, Deyun
    Wang, Liguan
    Bi, Lin
    [J]. IEEE ACCESS, 2020, 8 : 80148 - 80159
  • [3] FAST EVALUATION OF RADIAL BASIS FUNCTIONS .1.
    BEATSON, RK
    NEWSAM, GN
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1992, 24 (12) : 7 - 19
  • [4] Fast evaluation of radial basis functions: Methods for four-dimensional polyharmonic splines
    Beatson, RK
    Cherrie, JB
    Ragozin, DL
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 32 (06) : 1272 - 1310
  • [5] Fast evaluation of radial basis functions: Methods for two-dimensional polyharmonic splines
    Beatson, RK
    Light, WA
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1997, 17 (03) : 343 - 372
  • [6] Fast fitting of radial basis functions: Methods based on preconditioned GMRES iteration
    R.K. Beatson
    J.B. Cherrie
    C.T. Mouat
    [J]. Advances in Computational Mathematics, 1999, 11 : 253 - 270
  • [7] Fast fitting of radial basis functions: Methods based on preconditioned GMRES iteration
    Beatson, RK
    Cherrie, JB
    Mouat, CT
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 1999, 11 (2-3) : 253 - 270
  • [8] Classification by Evolutionary Generalized Radial Basis Functions
    Castano, A.
    Hervas-Martinez, C.
    Gutierrez, P. A.
    Fernandez-Navarro, F.
    Garcia, M. M.
    [J]. 2009 9TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, 2009, : 203 - +
  • [9] Approximation of Bivariate Functions by Generalized Wendland Radial Basis Functions
    Kouibia, Abdelouahed
    Gonzalez, Pedro
    Pasadas, Miguel
    Mustafa, Bassim
    Yakhlef, Hossain Oulad
    Omri, Loubna
    [J]. MATHEMATICS, 2024, 12 (16)
  • [10] Rapid evaluation of radial basis functions
    Roussos, G
    Baxter, BJC
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 180 (01) : 51 - 70