On Quantum Methods for Machine Learning Problems Part I: Quantum Tools

被引:27
|
作者
Ablayev, Farid [2 ]
Ablayev, Marat [2 ]
Huang, Joshua Zhexue [1 ]
Khadiev, Kamil [2 ]
Salikhova, Nailya [2 ]
Wu, Dingming [1 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518000, Peoples R China
[2] Kazan Fed Univ, Kazan 42008, Russia
来源
BIG DATA MINING AND ANALYTICS | 2020年 / 3卷 / 01期
基金
俄罗斯科学基金会;
关键词
quantum algorithm; quantum programming; machine learning; POLYNOMIAL-TIME ALGORITHMS; DISCRETE LOGARITHMS; PRIME FACTORIZATION;
D O I
10.26599/BDMA.2019.9020016
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This is a review of quantum methods for machine learning problems that consists of two parts. The first part, "quantum tools", presents the fundamentals of qubits, quantum registers, and quantum states, introduces important quantum tools based on known quantum search algorithms and SWAP-test, and discusses the basic quantum procedures used for quantum search methods. The second part, "quantum classification algorithms", introduces several classification problems that can be accelerated by using quantum subroutines and discusses the quantum methods used for classification.
引用
收藏
页码:41 / 55
页数:15
相关论文
共 50 条
  • [1] On Quantum Methods for Machine Learning Problems Part Ⅰ: Quantum Tools
    Farid Ablayev
    Marat Ablayev
    Joshua Zhexue Huang
    Kamil Khadiev
    Nailya Salikhova
    Dingming Wu
    [J]. Big Data Mining and Analytics, 2020, (01) : 41 - 55
  • [2] On Quantum Methods for Machine Learning Problems Part Ⅱ: Quantum Classification Algorithms
    Farid Ablayev
    Marat Ablayev
    Joshua Zhexue Huang
    Kamil Khadiev
    Nailya Salikhova
    Dingming Wu
    [J]. Big Data Mining and Analytics, 2020, (01) : 56 - 67
  • [3] On Quantum Methods for Machine Learning Problems Part II: Quantum Classification Algorithms
    Ablayev, Farid
    Ablayev, Marat
    Huang, Joshua Zhexue
    Khadiev, Kamil
    Salikhova, Nailya
    Wu, Dingming
    [J]. BIG DATA MINING AND ANALYTICS, 2020, 3 (01) : 56 - 67
  • [4] Kernel methods in Quantum Machine Learning
    Riccardo Mengoni
    Alessandra Di Pierro
    [J]. Quantum Machine Intelligence, 2019, 1 : 65 - 71
  • [5] Kernel methods in Quantum Machine Learning
    Mengoni, Riccardo
    Di Pierro, Alessandra
    [J]. QUANTUM MACHINE INTELLIGENCE, 2019, 1 (3-4) : 65 - 71
  • [6] New Single-Preparation Methods for Unsupervised Quantum Machine Learning Problems
    Deville, Yannick
    Deville, Alain
    [J]. IEEE Transactions on Quantum Engineering, 2021, 2
  • [7] Machine learning methods in quantum computing theory
    Fastovets, D., V
    Bogdanov, Yu, I
    Bantysh, B., I
    Lukichev, V. F.
    [J]. INTERNATIONAL CONFERENCE ON MICRO- AND NANO-ELECTRONICS 2018, 2019, 11022
  • [8] Quantum machine learning beyond kernel methods
    Jerbi, Sofiene
    Fiderer, Lukas J.
    Poulsen Nautrup, Hendrik
    Kuebler, Jonas M.
    Briegel, Hans J.
    Dunjko, Vedran
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [9] Variational Methods in Optical Quantum Machine Learning
    Simonetti, Marco
    Perri, Damiano
    Gervasi, Osvaldo
    [J]. IEEE ACCESS, 2023, 11 : 131394 - 131408
  • [10] Quantum machine learning beyond kernel methods
    Sofiene Jerbi
    Lukas J. Fiderer
    Hendrik Poulsen Nautrup
    Jonas M. Kübler
    Hans J. Briegel
    Vedran Dunjko
    [J]. Nature Communications, 14