Prediction of current-induced local scour around complex piers: Review, revisit, and integration

被引:35
|
作者
Baghbadorani, Danial Amini [1 ]
Ataie-Ashtiani, Behzad [1 ,2 ]
Beheshti, Aliasghar [3 ]
Hadjzaman, Mahmoud [1 ]
Jamali, Mirmosadegh [1 ]
机构
[1] Sharif Univ Technol, Dept Civil Engn, POB 11155-9313, Tehran, Iran
[2] Flinders Univ S Australia, Coll Sci & Engn, Natl Ctr Groundwater Res & Training, GPO Box 2100, Adelaide, SA 5001, Australia
[3] Ferdowsi Univ Mashhad, Water Sci & Engn Dept, POB 91775-1163, Mashhad, Iran
关键词
Scour; Complex pier; Bridge foundation; Marine structures; FOUNDATION GEOMETRY; TEMPORAL VARIATION; PILE GROUPS; BRIDGE; HOLE; EVOLUTION; DEPTH;
D O I
10.1016/j.coastaleng.2017.12.006
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Complex piers (CPs), consisting of a column, pile cap and pile group, are commonly built as foundations for hydraulic and marine structures. Scour-hole development around CPs is studied in this paper. A total of 52 tests is carried out on 4 CP models, with experiments durations ranging from 24 to 120 h. All of the available experimental data for clear-water scour around CPs including the collected data of the present study and those previously published are reviewed and combined into a database. A special case of bridge piers with deep foundation or caisson instead of pile caps is also considered, which is herein called compound piers. The database contains 367 experiments for CPs and 162 experiments for compound piers. The predictive equations of the maximum scour-hole depth at complex piers including HEC-18 and FDOT equations are revisited and a new equation is proposed. Comparisons of the prediction equations shows that for CP data, the absolute error is 28%, 79% and 108% for the proposed, HEC-18 and FDOT equations, respectively. Underestimation below -20% error line occurs for 11%, 15%, and 7% of the cases in the proposed, HEC-18, and FDOT equations, respectively. For compound piers, the proposed equation has 41% absolute error while HEC-18 equation has 93% absolute error.
引用
收藏
页码:43 / 58
页数:16
相关论文
共 50 条
  • [1] Local scour prediction around piers with complex geometry
    Amini, Ata
    Mohammad, Thamer Ahmed
    MARINE GEORESOURCES & GEOTECHNOLOGY, 2017, 35 (06) : 857 - 864
  • [2] Local scour at complex bridge piers–experimental validation of current prediction methods
    Sousa A.M.
    Ribeiro T.P.
    ISH Journal of Hydraulic Engineering, 2021, 27 (S1) : 286 - 293
  • [3] CFD prediction of local scour hole around bridge piers
    Zhu Zhi-wen
    Liu Zhen-qing
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2012, 19 (01) : 273 - 281
  • [4] Turbulent flow characteristics responsible for current-induced scour around a complex pier
    Gautam, Priyanka
    Eldho, T., I
    Mazumder, B. S.
    Behera, M. R.
    CANADIAN JOURNAL OF CIVIL ENGINEERING, 2022, 49 (04) : 597 - 606
  • [5] CFD prediction of local scour hole around bridge piers
    祝志文
    刘震卿
    Journal of Central South University, 2012, 19 (01) : 273 - 281
  • [7] CFD prediction of local scour hole around bridge piers
    Zhi-wen Zhu
    Zhen-qing Liu
    Journal of Central South University, 2012, 19 : 273 - 281
  • [8] Evaluation of local scour depth around complex bridge piers
    Moreno, M.
    Maia, R.
    Couto, L.
    Cardoso, A.
    RIVER FLOW 2012, VOLS 1 AND 2, 2012, : 935 - 942
  • [9] LOCAL SCOUR AROUND CYLINDRICAL PIERS
    BREUSERS, HNC
    NICOLLET, G
    SHEN, HW
    JOURNAL OF HYDRAULIC RESEARCH, 1977, 15 (03) : 211 - 252
  • [10] Prediction of local scour around complex piers using GEP and M5-Tree
    Reza Mohammadpour
    Arabian Journal of Geosciences, 2017, 10