Deviations of a random walk in a random scenery with stretched exponential tails

被引:9
|
作者
Gantert, N
van der Hofstad, R
König, W
机构
[1] Univ Leipzig, Math Inst, D-04109 Leipzig, Germany
[2] Univ Munster, Inst Stat Math, D-48149 Munster, Germany
[3] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
关键词
random walk in random scenery; local time; large deviations; stretched exponential tails;
D O I
10.1016/j.spa.2005.10.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (Z(n))(n is an element of N) be a d-dimensional random walk in random scenery, i.e., Z(n) = Sigma(n-1)(k=0) Y-Sk with (S-k)(k is an element of N0) a random walk in Z(d) and (Y-z)(z is an element of Zd) an i.i.d. scenery, independent of the walk. We assume that the random variables Y-z have a stretched exponential tail. In particular, they do not possess exponential moments. We identify the speed and the rate of the logarithmic decay of P(Z(n) > nt(n)) for all sequences (t(n))(n is an element of N) satisfying a certain lower bound. This complements results of Gantert et al. [Annealed deviations of random walk in random scenery, preprint, 2005], where it was assumed that Y-z has exponential moments of all orders. In contrast to the situation (Gantert et al., 2005), the event {Z(n) > nt(n)} is not realized by a homogeneous behavior of the walk's local times and the scenery, but by many visits of the walker to a particular site and a large value of the scenery at that site. This reflects a well-known extreme behavior typical for random variables having no exponential moments. (C) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:480 / 492
页数:13
相关论文
共 50 条
  • [1] Large deviations for the maximum of a branching random walk with stretched exponential tails
    Dyszewski, Piotr
    Gantert, Nina
    Hoefelsauer, Thomas
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2020, 25 : 1 - 13
  • [2] The maximum of a branching random walk with stretched exponential tails
    Dyszewski, Piotr
    Gantert, Nina
    Hoefelsauer, Thomas
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (02): : 539 - 562
  • [3] Annealed deviations of random walk in random scenery
    Gantert, Nina
    Koenig, Wolfgang
    Shi, Zhan
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2007, 43 (01): : 47 - 76
  • [4] Moderate deviations for a random walk in random scenery
    Fleischmann, Klaus
    Moerters, Peter
    Wachtel, Vitali
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2008, 118 (10) : 1768 - 1802
  • [5] Self-normalized Moderate Deviations for Random Walk in Random Scenery
    Xinwei Feng
    Qi-Man Shao
    Ofer Zeitouni
    Journal of Theoretical Probability, 2021, 34 : 103 - 124
  • [6] Moderate deviations for the self-normalized random walk in random scenery
    Peretz, Tal
    ELECTRONIC JOURNAL OF PROBABILITY, 2021, 26
  • [7] Self-normalized Moderate Deviations for Random Walk in Random Scenery
    Feng, Xinwei
    Shao, Qi-Man
    Zeitouni, Ofer
    JOURNAL OF THEORETICAL PROBABILITY, 2021, 34 (01) : 103 - 124
  • [8] SCENERY RECONSTRUCTION FOR RANDOM WALK ON RANDOM SCENERY SYSTEMS
    Lakrec, Tsviqa
    ISRAEL JOURNAL OF MATHEMATICS, 2022, 248 (01) : 149 - 200
  • [9] Scenery reconstruction for random walk on random scenery systems
    Tsviqa Lakrec
    Israel Journal of Mathematics, 2022, 248 : 149 - 200
  • [10] Dynamic random walk in a random scenery
    Guillotin, N
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (02): : 231 - 234