Warped resolved La,b,c cones

被引:2
|
作者
Cvetic, Mirjam [1 ]
Vazquez-Poritz, J. F. [2 ]
机构
[1] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA
[2] Texas A&M Univ, George P & Cynthia W Mitchell Inst Fundamental Ph, College Stn, TX 77843 USA
来源
PHYSICAL REVIEW D | 2008年 / 77卷 / 12期
关键词
D O I
10.1103/PhysRevD.77.126003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We construct supergravity solutions describing a stack of D3-branes localized at a point on a blown-up cycle of a resolved L-a,L-b,L-c cone. The geometry flows from AdS(5)xL(a,b,c) to AdS(5)xS(5)/Z(k). The corresponding quiver gauge theory undergoes a renormalization group flow between two superconformal fixed points, which leads to semi-infinite chains of flows between the various L-a,L-b,L-c fixed points. The general system is described by a triplet of Heun equations, which can each be solved by an expansion with a three-term recursion relation, though there are closed-form solutions for certain cases. This enables us to read off the operators that acquire nonzero vacuum expectation values as the quiver gauge theory flows away from a fixed point.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Straightening warped cones
    Sawicki, Damian
    Wu, Jianchao
    [J]. JOURNAL OF TOPOLOGY AND ANALYSIS, 2021, 13 (04) : 933 - 957
  • [2] Warped cones and property A
    Roe, J
    [J]. GEOMETRY & TOPOLOGY, 2005, 9 : 163 - 178
  • [3] WARPED CONES AND SPECTRAL GAPS
    Nowak, Piotr W.
    Sawicki, Damian
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (02) : 817 - 823
  • [4] Coarse Equivalences Between Warped Cones
    Hyun Jeong Kim
    [J]. Geometriae Dedicata, 2006, 120 : 19 - 35
  • [5] Coarse equivalences between warped cones
    Kim, Hyun Jeong
    [J]. GEOMETRIAE DEDICATA, 2006, 120 (01) : 19 - 35
  • [6] On the stability of minimal cones in warped products
    Bezerra, K. S.
    Caminha, A.
    Lima, B. P.
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2014, 45 (03): : 485 - 503
  • [7] On the stability of minimal cones in warped products
    K. S. Bezerra
    A. Caminha
    B. P. Lima
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2014, 45 : 485 - 503
  • [8] SUPER-EXPANDERS AND WARPED CONES
    Sawicki, Damian
    [J]. ANNALES DE L INSTITUT FOURIER, 2020, 70 (04) : 1753 - 1774
  • [9] Warped cones over profinite completions
    Sawicki, Damian
    [J]. JOURNAL OF TOPOLOGY AND ANALYSIS, 2018, 10 (03) : 563 - 584
  • [10] Fermions in a warped resolved conifold
    Dantas, D. M.
    Silva, J. E. G.
    Almeida, C. A. S.
    [J]. PHYSICS LETTERS B, 2013, 725 (4-5) : 425 - 430