Fitted Finite Volume Method for Unsaturated Flow Parabolic Problems with Space Degeneration

被引:1
|
作者
Koleva, Miglena N. [1 ]
Vulkov, Lubin G. [1 ]
机构
[1] Univ Ruse, 8 Studentska St, Ruse 7017, Bulgaria
关键词
NUMERICAL-SOLUTION; RICHARDS EQUATION; ALGORITHM;
D O I
10.1007/978-3-030-97549-4_60
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the present work, we discuss a question of correct boundary conditions and adequate approximation of parabolic problems with space degeneration in porous media. To the Richards equation, as a typical problem, we apply a time discretization, linearize the obtained nonlinear problem and introduce correct boundary conditions. Then, we develop fitted finite volume method to get the space discretization of the model problem. A graded space mesh is also deduced. We illustrate experimentally that the proposed method is efficient in the case of degenerate permeability.
引用
收藏
页码:524 / 532
页数:9
相关论文
共 50 条
  • [1] A Quadratic Finite Volume Method for Parabolic Problems
    Zhang, Yuanyuan
    Liu, Xiaoping
    [J]. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2023, 15 (06) : 1407 - 1427
  • [2] Positive Fitted Finite Volume Method for Semilinear Parabolic Systems on Unbounded Domain
    Koleva, Miglena N.
    Vulkov, Lubin G.
    [J]. AXIOMS, 2024, 13 (08)
  • [3] Discontinuous Finite Volume Element Method for Parabolic Problems
    Bi, Chunjia
    Geng, Jiaqiang
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (02) : 367 - 383
  • [4] A fitted finite volume method for stochastic optimal control problems in finance
    Nyoumbi, Christelle Dleuna
    Tambue, Antoine
    [J]. AIMS MATHEMATICS, 2021, 6 (04): : 3053 - 3079
  • [5] Positive Fitted Finite Volume Method for Semi-linear Parabolic Systems Transformed on Finite Interval
    Chernogorova, Tatiana
    Dimov, Ivan
    Vulkov, Lubin
    [J]. PROCEEDINGS OF THE 44TH INTERNATIONAL CONFERENCE "APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS", 2018, 2048
  • [6] POSTPROCESSING OF A FINITE VOLUME ELEMENT METHOD FOR SEMILINEAR PARABOLIC PROBLEMS
    Yang, Min
    Bi, Chunjia
    Liu, Jiangguo
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (05): : 957 - 971
  • [7] THE SPACE-TIME FINITE ELEMENT METHOD FOR PARABOLIC PROBLEMS
    李宏
    刘儒勋
    [J]. Applied Mathematics and Mechanics(English Edition), 2001, (06) : 687 - 700
  • [8] The space-time finite element method for parabolic problems
    Li Hong
    Liu Ru-xun
    [J]. Applied Mathematics and Mechanics, 2001, 22 (6) : 687 - 700
  • [9] The space-time finite element method for parabolic problems
    Li, H
    Liu, RX
    [J]. APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2001, 22 (06) : 687 - 700
  • [10] The Space-Time Finite Element Method for Parabolic Problems
    Hong Li
    Ru-xun Liu
    [J]. Applied Mathematics and Mechanics, 2001, 22 : 687 - 700