The hepatotoxic metabolite of acetaminophen directly activates the Keap1-Nrf2 cell defense system

被引:104
|
作者
Copple, Ian M.
Goldring, Christopher E.
Jenkins, Rosslind E.
Chia, Alvin J. L.
Randle, Laura E.
Hayes, John D.
Kitteringham, Neil R.
Park, B. Kevin [1 ]
机构
[1] Univ Liverpool, Sch Biomed Sci, Dept Pharmacol & Therapeut, Liverpool L69 3GE, Merseyside, England
基金
英国医学研究理事会; 英国惠康基金;
关键词
D O I
10.1002/hep.22472
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
The transcription factor Nrf2 regulates the expression of numerous cytoprotective genes in mammalian cells. We have demonstrated previously that acetaminophen activates Nrf2 in mouse liver following administration of non-hepatotoxic and hepatotoxic doses in vivo, implying that Nrf2 may have an important role in the protection against drug-induced liver injury. Nrf2 activation has been proposed to occur through the modification of cysteine residues within Keap1, the cytosolic repressor of Nrf2. We hypothesized that acetaminophen activates Nrf2 via the formation of its reactive metabolite N-acetyl-p-benzoquinoneimine (NAPQI), which may disrupt the repression of Nrf2 through the modification of cysteine residues within Keap1. Here, we show that NAPQI can directly activate the Nrf2 pathway in mouse liver cells, inducing an adaptive defense response that is antagonized by RNA interference targeted against Nrf2. Furthermore, mass spectrometric analysis shows that NAPQI selectively modifies cysteine residues in Keap1, both in recombinant protein in vitro and in cells ectopically expressing Keap1. Using this cell-based model, we demonstrate that activation of Nrf2 by NAPQI and a panel of probe molecules [dexamethasone 21-mesylate, 15-deoxy Delta-((12,14))-prostaglandin J(2), 2,4-dinitrochlorobenzene, and iodoacetamide] correlates with the selective modification of cysteine residues located within the intervening region of Keap1. However, substantial depletion of glutathione (to less than 15 % of basal levels) by buthionine sulfoximine, which does not directly modify Keap1, is also sufficient to activate Nrf2. Conclusion: Nrf2 can be activated via the direct modification of cysteine residues located within the intervening region of Keap1., but also via the substantial depletion of glutathione without the requirement for direct modification of Keap1. It is possible that both of these mechanisms contribute to the activation of Nrf2 by acetaminophen.
引用
收藏
页码:1292 / 1301
页数:10
相关论文
共 50 条
  • [1] ACTIVATION OF THE KEAP1-NRF2-ARE CELL DEFENSE SYSTEM BY THE REACTIVE METABOLITE OF ACETAMINOPHEN
    Goldring, Christopher E.
    Copple, Ian
    Jenkins, Roz
    Randle, Laura
    Chia, Alvin
    Hayes, John
    Kitteringham, Neil
    Park, Kevin
    DRUG METABOLISM REVIEWS, 2008, 40 : 95 - 96
  • [2] The KeAP1-NRF2 System in Cancer
    Taguchi, Keiko
    Yamamoto, Masayuki
    FRONTIERS IN ONCOLOGY, 2017, 7
  • [3] Proteasome Dysfunction Activates Autophagy and the Keap1-Nrf2 Pathway
    Kageyama, Shun
    Sou, Yu-shin
    Uemura, Takefumi
    Kametaka, Satoshi
    Saito, Tetsuya
    Ishimura, Ryosuke
    Kouno, Tsuguka
    Bedford, Lynn
    Mayer, R. John
    Lee, Myung-Shik
    Yamamoto, Masayuki
    Waguri, Satoshi
    Tanaka, Keiji
    Komatsu, Masaaki
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (36) : 24944 - 24955
  • [4] Applications of the Keap1-Nrf2 system for gene and cell therapy
    Kanninen, Katja M.
    Pomeshchik, Yuriy
    Leinonen, Hanna
    Malm, Tarja
    Koistinaho, Jari
    Levonen, Anna-Liisa
    FREE RADICAL BIOLOGY AND MEDICINE, 2015, 88 : 350 - 361
  • [5] The KEAP1-NRF2 System and Neurodegenerative Diseases
    Uruno, Akira
    Yamamoto, Masayuki
    ANTIOXIDANTS & REDOX SIGNALING, 2023, 38 (13) : 974 - 988
  • [6] Molecular basis of the Keap1-Nrf2 system
    Suzuki, Takafumi
    Yamamoto, Masayuki
    FREE RADICAL BIOLOGY AND MEDICINE, 2015, 88 : 93 - 100
  • [7] The Keap1-Nrf2 system and diabetes mellitus
    Uruno, Akira
    Yagishita, Yoko
    Yamamoto, Masayuki
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2015, 566 : 76 - 84
  • [8] THE KEAP1-NRF2 SYSTEM IN HEALTH AND DISEASE
    Yamamoto, Masayuki
    FREE RADICAL BIOLOGY AND MEDICINE, 2023, 201 : 1 - 2
  • [9] The KEAP1-NRF2 System and Esophageal Cancer
    Hirose, Wataru
    Oshikiri, Hiroyuki
    Taguchi, Keiko
    Yamamoto, Masayuki
    CANCERS, 2022, 14 (19)
  • [10] Physical and Functional Interaction of Sequestosome 1 with Keap1 Regulates the Keap1-Nrf2 Cell Defense Pathway
    Copple, Ian M.
    Lister, Adam
    Obeng, Akua D.
    Kitteringham, Neil R.
    Jenkins, Rosalind E.
    Layfield, Robert
    Foster, Brian J.
    Goldring, Christopher E.
    Park, B. Kevin
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (22) : 16782 - 16788