Object Viewpoint Estimation using CNN-based Classifier

被引:0
|
作者
Bong, Eunsoo [1 ]
Lee, Eunho [1 ]
Hwang, Youngbae [1 ]
机构
[1] Chungbuk Natl Univ, Dept Control & Robot Engn, Cheongju, South Korea
关键词
Viewpoint estimation; Image classification; CNN;
D O I
10.1109/PlotCon55845.2022.9932036
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The pose information of an object plays an important role in the field of robotics and computer vision. The pose estimation process is conventionally difficult and complicated. In the case of pose estimation that requires 3D CAD models, it is not easy to obtain the CAD models for target objects in specific tasks. In this paper, we show that the viewpoint can be estimated through an image classification method instead of complex pose estimation approaches. We reorganize a dataset to predict an azimuth angle based on Pascal 3D+ dataset. Several convolution neural networks-based classifiers are applied for categories discretized with viewpoint. The performance of EfficientNet is the best, and the smaller the number of discretized viewpoint bins, the better the performance.
引用
收藏
页码:80 / 85
页数:6
相关论文
共 50 条
  • [1] Handling Object Symmetries in CNN-based Pose Estimation
    Richter-Klug, Jesse
    Frese, Udo
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 13850 - 13856
  • [2] CNN-based Shape Estimation for Extended Object Tracking using Point Cloud Measurements
    Steuernagel, Simon
    Thormann, Kolja
    Baum, Marcus
    [J]. 2022 25TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2022), 2022,
  • [3] Joint Object Detection and Viewpoint Estimation using CNN features
    Guindel, Carlos
    Martin, David
    Maria Armingol, Jose
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON VEHICULAR ELECTRONICS AND SAFETY (ICVES), 2017, : 145 - 150
  • [4] Object Proposals using CNN-based edge filtering
    Waris, Muhammad Adeel
    Iosifidis, Alexandros
    Gabbouj, Moncef
    [J]. 2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 627 - 632
  • [5] CNN-Based Classifier as an Offline Trigger for the CREDO Experiment
    Piekarczyk, Marcin
    Bar, Olaf
    Bibrzycki, Lukasz
    Niedzwiecki, Michal
    Rzecki, Krzysztof
    Stuglik, Slawomir
    Andersen, Thomas
    Budnev, Nikolay M.
    Alvarez-Castillo, David E.
    Cheminant, Kevin Almeida
    Gora, Dariusz
    Gupta, Alok C.
    Hnatyk, Bohdan
    Homola, Piotr
    Kaminski, Robert
    Kasztelan, Marcin
    Knap, Marek
    Kovacs, Peter
    Lozowski, Bartosz
    Miszczyk, Justyna
    Mozgova, Alona
    Nazari, Vahab
    Pawlik, Maciej
    Rosas, Matias
    Sushchov, Oleksandr
    Smelcerz, Katarzyna
    Smolek, Karel
    Stasielak, Jaroslaw
    Wibig, Tadeusz
    Wozniak, Krzysztof W.
    Zamora-Saa, Jilberto
    [J]. SENSORS, 2021, 21 (14)
  • [6] CNN-BASED VIDEO CODEC CLASSIFIER FOR MULTIMEDIA FORENSICS
    Pessoa, Rodrigo
    Kokaram, Anil
    Pitie, Francois
    Sugrue, Mark
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 3033 - 3037
  • [7] CNN-based Rescaling Factor Estimation
    Liu, Chang
    Kirchner, Matthias
    [J]. IH&MMSEC '19: PROCEEDINGS OF THE ACM WORKSHOP ON INFORMATION HIDING AND MULTIMEDIA SECURITY, 2019, : 119 - 124
  • [8] CNN-based edge filtering for object proposals
    Waris, Muhammad Adeel
    Iosifidis, Alexandros
    Gabbouj, Moncef
    [J]. NEUROCOMPUTING, 2017, 266 : 631 - 640
  • [9] CNN-BASED INITIAL BACKGROUND ESTIMATION
    Halfaoui, Ibrahim
    Bouzaraa, Fahd
    Urfalioglu, Onay
    [J]. 2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 101 - 106
  • [10] Multiclass wound image classification using an ensemble deep CNN-based classifier
    Rostami, Behrouz
    Anisuzzaman, D. M.
    Wang, Chuanbo
    Gopalakrishnan, Sandeep
    Niezgoda, Jeffrey
    Yu, Zeyun
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 134