Sequential Possibilistic One-Means Clustering

被引:0
|
作者
Runkler, Thomas A. [1 ]
Keller, James M. [2 ]
机构
[1] Siemens AG, Corp Technol, D-81730 Munich, Germany
[2] Univ Missouri, Elect Engn & Comp Sci Dept, Columbia, MO 65211 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fuzzy c-means (FCM) clustering is known to be sensitive to outliers and noise. Possibilistic c-means (PCM) has been reported to be more robust against outliers and noise but may yield coincident clusters. We introduce a variant of PCM called sequential possibilistic one-means (SP1M) that finds clusters sequentially, takes into account the previously found clusters for initialization, and discards coincident clusters. Experiments with the well-known BIRCH benchmark data set and two variants of BIRCH indicate that SP1M is able to find a significantly larger percentage of the clusters contained in the data, with about twice as many cluster update steps, but significantly faster than FCM and PCM.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Sequential Possibilistic One-Means Clustering with Dynamic Eta
    Wu, Wenlong
    Keller, James M.
    Runkler, Thomas. A.
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2018,
  • [2] Sequential Possibilistic Local Information One-Means Clustering For Image Segmentation
    Wu, Wenlong
    Keller, James M.
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2020,
  • [3] Sequential Sparse Adaptive Possibilistic Clustering
    Xenaki, Spyridoula D.
    Koutroumbas, Konstantinos D.
    Rontogiannis, Athanasios A.
    [J]. ARTIFICIAL INTELLIGENCE: METHODS AND APPLICATIONS, 2014, 8445 : 29 - 42
  • [4] Algorithms for sequential extraction of clusters by possibilistic clustering
    Miyamoto, Sadaaki
    Kuroda, Youhei
    [J]. MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2007, 4617 : 226 - +
  • [5] On tolerant fuzzy c-means clustering and tolerant possibilistic clustering
    Hamasuna, Yukihiro
    Endo, Yasunori
    Miyamoto, Sadaaki
    [J]. SOFT COMPUTING, 2010, 14 (05) : 487 - 494
  • [6] Suppressed possibilistic c-means clustering algorithm
    Yu, Haiyan
    Fan, Jiulun
    Lan, Rong
    [J]. APPLIED SOFT COMPUTING, 2019, 80 : 845 - 872
  • [7] Kernel Approach to Possibilistic C-Means Clustering
    Rhee, Frank Chung-Hoon
    Choi, Kil-Soo
    Choi, Byung-In
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2009, 24 (03) : 272 - 292
  • [8] On tolerant fuzzy c-means clustering and tolerant possibilistic clustering
    Yukihiro Hamasuna
    Yasunori Endo
    Sadaaki Miyamoto
    [J]. Soft Computing, 2010, 14 : 487 - 494
  • [9] Weighted possibilistic c-means clustering algorithms
    Schneider, A
    [J]. NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 176 - 180
  • [10] Intuitionistic Fuzzy Possibilistic C Means Clustering Algorithms
    Chaudhuri, Arindam
    [J]. ADVANCES IN FUZZY SYSTEMS, 2015, 2015