Convergence of implementable descent algorithms for unconstrained optimization

被引:9
|
作者
Dussault, JP [1 ]
机构
[1] Univ Sherbrooke, Dept Math & Informat, Sherbrooke, PQ, Canada
关键词
descent algorithms; global convergence;
D O I
10.1023/A:1004602012151
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Descent algorithms use sufficient descent directions combined with stepsize rules, such as the Armijo rule, to produce sequences of iterates whose cluster points satisfy some necessary optimality conditions. In this note, we present a proof that the whole sequence of iterates converges for quasiconvex objective functions.
引用
收藏
页码:739 / 745
页数:7
相关论文
共 50 条